

www.FirstRanker.com

Subject Title: Algebra		Prepared by: S Shravani
Year: II	Semester: IV	Updated on: 23.03.

Unit - I

- 1. A group G, identity element is unique.
- 2. In a group G, inverse element is unique.
- 3. Prove that the set Z of all integers form an abelian group w.r.t the operations defined by $a^*b = a+b+2$, for all $a,b \in Z$
- Cancellation laws holds in a group. (let G be a group. Then for a,b, c∈ G, ab=ac ⇒ b = c and ba=ca⇒ b = c.
- 5. In a group G for $a,b,x,y \in G$ the equation ax = b and ya = b have unique solutions.
- 6. If every element of a group (G,.) is its own inverse , show that (G,.) is abelian group.
- 7. The order of every element of a finite group is finite and less than or equal to the order of a group.
- 8. In a group G if $a \in G$, then $|a| = |a^{-1}|$.
- 9. If a is an element of group G such that |a| = n, then a^n =eiff n/m.
- 10. If a is an element of group G such that |a| = 7, then show that a is the cube of some element of G.
- 11. A non-empty complex H of a group G is subgroup pf G iff (i) $a \in H, b \in H \Rightarrow ab \in H$ a. (ii) $a \in H, a^{-1} \in H$.
- 12. A non-empty complex H of a group G is subgroup pf G iffa \in H, b \in H \Rightarrow ab⁻¹ \in H
- 13. The necessary and sufficient condition for a finite complex H of a group G to be a subgroup of G is a∈ H, b ∈
 H ⇒ ab ∈ H.
- 14. If H and K are two subgroups of a group G, then HK is subgroup of G iff HK = KH
- 15. If H_1 and H_2 are two subgroups of a group G, then $H_1 \cap H_2$ is also a subgroup of G.
- 16. The union of two subgroups of a group G is a subgroup iff one is contained in other.
- 17. Every cyclic abelian group is an abelian group. Converse is not true.
- 18. Every subgroup of cyclic group is cylic.
- 19. If a cyclic group G is generated by an element of order n, the a^n is generator of G iff (m,n) = 1.
- 20. The order of a cyclic group is equal to its generator.
- 21. Show that the group ($G = \{1, 2, 3, 4, 5, 6\}, x_7$) is cyclic. also write down all its generators.

- 22. How many subgroups does Z_{20} have? Listthem.
- 23. If G is an infinite cyclic group , the G has exactly two generators which are inverse of each other.
- 24. Write down the following products as disjoint cycles.
 - (i) (1 3 2) (5 6 7) (2 6 1) (4 5)
 - (ii) (ii) (1 3 6) (1 3 5 7) (6 7) (1 2 3 4).
- 25. Definations:
 - i. Group

FirstRanker.com

- ii. Subgroup
- iii. Addition modulo
- iv. Multiplication modulo
- v. Cyclic group
- vi. Permutation group
- vii. Order of a group
- viii. Order of an element

Unit -III

- 26. If R is a Boolean ring then (i) a+a=0 for all a ∈ R (ii) a+b = 0 ⇒ a=b and (iii) R is commutative under multiplication.
- 27. Find all units of Z_{14}
- 28. The intersection of two subring of a ring R is a subring of R, A ring has no zero divisors iff the cancellation laws holds in R, A field has no zero-divisors.
- 29. List all zero-divisors in z_{20} Can you see a relationship between the zero-divisors of z_{20} and the units of z_{20} ?, A field is an integral domain.
- 30. Every finite integral dimain is a field. The characteristic of an integral domain is either a prime or zero.
- 31. A field has no proper nin-trivial ideals. A commutative ring R with unity element is a field if R have no proper ideals. The union of two ideals of a Ring R is a ideal iff one is contained in other. Every ideal of z is a principal ideal.
- 32. An ideal U of a commutative ring R with unity is maximal iff the quotient eing R/U is a field. Find all maximal ideals in a. Z_8 . b. Z_{10} . c. $Z1_2$. d. Z_n .
- 33. 1. Definations:

Ring, Boolean ring, Sub ring
Integral domain
Field
Zero divisor
Characteristic of a ring
Idempotent and nilopotent
Ideal
Principal ideal
Maximal ideal
Factor ring
Prime ideals

- Unit IV
 - 34. 1. Test by divisibility by 9.
 - 2. Prove that a ring homomorphism carries an idempotent to an idempotent.
 - 3. The homomorphic image of a ring is a ring.
 - ^{35.} Let R, R' be two rings and $\phi : R \to R'$ be a homomorphism. Foe every ideal U' in a ring R', $f^{-1}(U')$ is an ideal in R.
 - 36. Let $f(x) = 4x^3 + 2x^2 + x + 3$ and $g(x) = 3x^4 + 3x^3 + 3x^2 + x + 4$, where $f(x), g(x) \in Z_5[x]$. Compute f(x) + g(x) and f(x).g(x).

- 37. If ϕ is a homomorphism of a ring R into a ring R' the ker ϕ is an ideal of R. If ϕ is a homomorphism of a ring R into a ring R then R' then ϕ is an into isomophism iff Every quotient ring of a ring is a homomorphic image of a ring. Fundamental theorem of homomorphism
- 38. The division algorithm.Factor theorem.Determine all ring homomorphisms from Z to Z.
- 39. Definitions:
- i. Homomorphism ring
- ii. Isomorphism ring
- iii. Homomorphic image of ring
- iv. Monomorphism ring
- v. Automorphism ring
- vi. Kernel of a homomorphism of ring
- vii. Polynomial ring
- viii. Degree of polynomial

Unit II

40. Any infinite cylic group is isomorphic to integers Z.
Cayley's theorem.
Find the regular permutations group isomorphic to the multiplicative group

- $\{1, -1, i, -i\}.$
- ^{41.} Let (G, .), (G', .) be two groups. let ϕ be a homomorphism from G into G' then (i) $\phi(e) = e'$ where e is the identity in G and e' is identity in G'. (ii) $\phi(a^{-1}) = {\phi(a)}^{-1}$.
- 42. Every homomorphic image of an abelian group is abelian. commute.
- 43. let ϕ be a isomorphism from G onto G then G = (a)iff G = (ϕ (a)).
- 44. let ϕ be a isomorphism from G onto G then for any elements a and b in G, a and b commute iff $\phi(a)$ and $\phi(b)$
- 45. show that the mapping $\phi : G \to G$ such that $\phi(a) = a^{-1}$ for all $a \in G$, is an automorphism f a group G iff G is abelian.

The set of all automorphism of a group G forms a group w.r.t composition of mapping.

^{46.} The set of all inner automorphism of a group G forms a group w.r.t composition of mapping. H is any subgroup of a group (G, .) and $h \in G$ then $h \in H$, iff hH=H=Hh.

If a and b are any two elements of group G and H is subgroup of group G then

- 47. Any two left (right) cosets of a subgroup are either disjoint or identical.
 - If H is a subgroup of a group G fora, $b \in G$ the relation $a \equiv b \pmod{H}$ is an equivalence relation. If H is a subgroup of a group G then there is one-one correspondence between the set of all distinct left cosets of H in G and the set of all distinct right cosets of H in G.

48. Lagrange's theorem. If G is a finite group and a ∈ G, then |a|/|G|. If p is a prime number then every group of order p is cyclic group i.e a group of prime order is cyclic. Orbit – Stabilizer theorem.

- 49. A subgroup of H of a group G is normal, if xHx⁻¹ = H for all x ∈ G.
 A subgroup of H of a group G is a normal subgroup of G iff each left coset of H in G is a right coset of H inG.
 The set A_n of all even permutations on n symbols is a normal subgroup of the permutation group S_n on the n symbols.
- 50. A subgroup of H of a group G is a normal subgroup of G iff product of two left(right) cosets of H in G is again left(right) coset of H in G.

Every subgroup of an abelian group is normal.

If G is a group and H is a subgroup of index 2 in G, then H is normal subgroup of G. The union of two normal subgroups of a group G is a normal subgroup. H is normal subgroup of G. the set ^G of all cosets of H in G w.r.t coset multiplication is a group

- 51. 1. Definitions:
 - i. Homomorphism Group
 - ii. Isomorphism Group
 - iii. Homomorphic image of a Group
 - iv. Monomorphism Group
 - v. Automorphism Group
 - vi. Coset
 - vii. Congruence modulo
 - viii. Index
 - ix. Normal subgroup
 - x. Factor group
 - xi. Kernel of a homomorphism

www.FirstRanker.com