

www.FirstRanker.com

IS

Subject Title: Differential Equations			Prepared by: Afreen Begum
Year: I	Semester:	II	Updated on: 13-02-2020

Unit - I: Differential Equations of first order and first degree

- Find the general solution of $\sqrt{1-x^2}dy + \sqrt{1-y^2}dx = 0$ 1.
- 2. Solve the differential equation $(e^{x}+1)ydy+(y+1)dx=0$
- 3. Solve :xdx+ydy= $\frac{xdx+ydy}{x^2+y^2}$
- 4. Solve $\frac{dx}{Z^2 y} = \frac{dy}{Z^2 X} = \frac{dz}{y^2 X}$
- 5. Solve: $\frac{dx}{x^2 y^2 z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$
- 6. Solve : $\frac{dy}{dx} = \frac{y^2 + y + 1}{x^2 + x + 1}$
- $(x^{2} + y^{2})dy = 2xydx$ 8. Solve $(1+e^{\frac{x}{y}})dx + e^{\frac{x}{y}}[1-\frac{x}{y}]dy = 0$ 9. Solve (x+y-1)dy = (x+y+1)dx10. Solve $(1-x^{2})\frac{dy}{dx} + 2xy = x\sqrt{1-x^{2}}$ 11. Solve $(x+y+1)\frac{dy}{dx} 4$

 - 12. Show that the necessary and sufficient condition for the differential equation Mdx+Ndy=0 to be exact is that $\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$
 - 13. Solve y sin2xdx- $(1+y^2 + \cos 2_x)$ dy=0
 - 14. If the differential equation Mdx+Ndy=0 is homogeneous and Mx+Ny≠0,then show that $\frac{1}{Mx+Ny}$ is the integrating factor .Solve x^2y dx- $(x^3 + y^3)$ dy=0

www.FirstRanker.com

15. Solve:
$$(3x^2y^3e^y + y^3 + y^2)dx + (x^3y^3e^y - xy)dy = 0$$

16. Solve
$$(y^2 + 2x^2y)dx + (2x^3 - xy)dy = 0$$

17. Solve
$$(xy^2 - x^2)dx + (3x^2y^2 + x^2y - 2x^3 + y^2)dy = 0$$

- 18. Solve $xdx+ydy=a^2\left[\frac{xdy-ydx}{x^2+y^2}\right]$
- 19. Solve (yz+2x)dx+(zx-2z)dy+(xy-2y)dz=0
- 20. Solve : $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 xy)dz = 0$
- 21. Solve $\frac{xdx}{y^2z} = \frac{dy}{xz} = \frac{dz}{y^2}$
- 22. Solve $\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$ UNIT-2

Differential Equations of first order but not of first degree and applications of first order differential equations 23. Solve $x^2p^2 + xyp - 6y^2 = 0$

- 24. Solve p=log(px-y)
- 25. The charcoal from a tree killed in the volcanic eruption that formed a lake contained 44.5% of 14_c found in living matter .About how old is the lake (half life of 14_c is 5600 approximately).
- 26. Find the Orthogonal trajectories for $y=c_1e^{-x}$
- 27. Solve $(p-xy)(p-x^2)(p-y^2)=0$
- 28. Solve p^2 +2py cotx= y^2 .

www.FirstRanker.com

- 29. Solve (p+y+x)(xp+y+x)(p+2x)=0
- 30. Solve $p^{3}(x+2y)+3p^{2}(x+y)+(y+2x)p=0$
- 31. Solve $y+px=p^2x^4$ (or) Solve $y+px=x^4p^2$ $\left[p=\frac{dy}{dx}\right]$
- 32. Solve $y=2px+tan^{-1}(xp^2)$ where $p=\frac{dy}{dx}$
- 33. Solve $y=yp^2+2px$.
- 34. Reduce (y-px)(p-1)=p to clairaut's form and find the solution.
- 35. Solve sin px cosy=cos px siny +p where $p = \frac{dy}{dx}$
- 36. Solve $y = 2px + y^2p^3$.
- 37. The bacteria in a colony can grow unchecked by the law of exponential growth $y=y_0e^{kt}$. The colony starts with one bacterium and doubles every half hour. How many bacteria will the colony contain at the end of 24 hours .
- 38. If 100 mg of radium is reduced to 90 mg of a radium in 200 years.Determine how much radium will remain at the end of 1000 years.Also find the half life of radium.
- 39. It is found that 0.5 percent of radium disappears in 12 years.

(a)What percentage will disappear in 1000 years

- (b) What is the half life of radium?
- 40. If Rs.10,000 is invested at 6% per annum, find what amount has accumulated after 6 years if interest is compounded (a)Annually (b)Quarterly (c)Continuously.
- 41. Find the family orthogonal to the family $y=ce^{-x}$ of exponential curves.Determine the members of each family passing through (0,4).

www.FirstRanker.com

42. Find the orthogonal trajectory of $r=c_1(1-\sin\theta)$.

www.firstRanker.com