

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages : 02

Total No. of Questions: 18

B.Tech. (Automobile Engineering) (Sem.-5)

NUMERICAL METHODS Subject Code : BTAE-502-18

M.Code: 78226

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- State Simpson's three –Eighth rule.
- In four tosses of a coin, let x be the number of heads. Calculate the expected value of x.
- A sample of 20 items has a mean 42 units and S.D.5 units. Test the hypothesis that it is a random sample from a normal population with mean 45 units.
- 4. Find a real root of the equation $x = e^{-x}$ using Newton Raphson method.
- Evaluate Δ tan⁻¹ x
- Find positive real root of x³ x = 1 by bisection method, correct upto 2 decimal places between and 2.
- State Merit's of Lagrange's formula
- Define Spline function.
- Define types of numerical instability.
- Prove that the absolute error in the common logarithm of a number is less than half the relative error of the given number.

SECTION-B

- Solve the problem y" xy² + y² = 0. y (0) = 1, y'(0) = 0 to evaluate y (0.1) using Taylor's series methods.
- Use Gauss elimination method to solve the following system of equations:

$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$

1 M - 78226 (S2) - 65

www.FirstRanker.com

www.FirstRanker.com

Fit a poisson distribution to the following data and test the goodness of fit:

	r	0	1	2	3	4
j	f	109	65	22	3	1

- 14. Use Adam's Moulton-Bashforth method to find y (1.4) given $\frac{dy}{dx} = x^2$ (1+y), y (1) = 1, y (1.1) = 1.233, y (1.2) = 1.548 and y (1.3) = 1.979.
- 15. a) Compute f'(3) from the following table:

x	1	2	4	8	10
F(x)	0	1	5	21	27

b) Given the initial value problem : $y' = 1 + y^2$, y(0) = 0, Find y(0.6) by Runge Kutta fourth order method taking h = 0.2

SECTION-C

16. A river is 80m wide. The depth 'y' of the river at a distance 'x' from one bank is given by following table:

x	0	10	20	30	40	50	60	70	80
y	0	4	7	9	12	15	14	8	3

Find the approximate area of cross-section of the river using Simpson's one - third rule.

 A tank is discharging water through an orifice at a depth of x metre below the surface of the whose area is A m². Following are the values of x for the corresponding values of A.

A	1.257	1.39	1.52	1.65	1.809	1.962	2.123	2.295	2.462	2.650
x	1.5	1.65	1.8	1.950	2.1	2.25	2.4	2.55	2.7	2.85

Using the formula (0.018) T = $\int_{1.5}^{3.0} \frac{A}{\sqrt{x}} dx$, calculate T, the time (in seconds) for the

level of the water to drop from 3.0 m to 1.5 m above the orifice.

 Using Newton's divided difference formula, calculate the value of f(6) from the following data:

x	4	5	7	10	11	13
F(x)	48	100	294	900	1210	2028

Find a positive value of (17) (17) correct to four decimal places by Newton's Raphson's method.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M - 78226 (S2) - 65