Roll No. \square Total No. of Pages : 02

Total No. of Questions: 18

B.Tech. (Automobile Engineering) (Sem.-5)
 NUMERICAL METHODS
 Subject Code : BTAE-502-18
 M.Code : 78226

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. State Simpson's three-Eighth rule
2. In four tosses of a coin, let x be the number of heads. Calculate the expected value of x.
3. A sample of 20 items has a mean 42 units and S.D 5 units. Test the hypothesis that it is a random sample from a normal population with mean 45 units.
4. Find a real root of the equation $x=e^{-x}$ using Newton Raphson method.
5. Evaluate $\Delta \tan ^{-1} x$
6. Find positive real root of $x^{3}-x=1$ by bisection method, correct upto 2 decimal places between and 2 .
7. State Merit's of Lagrange's formula
8. Define Spline function.
9. Define types of numerical instability.
10. Prove that the absolute error in the common logarithm of a number is less than half the relative error of the given number.

SECTION-B

11. Solve the problem $y^{\prime \prime}-x y^{\prime 2}+y^{2}=0 . y(0)=1, y^{\prime}(0)=0$ to evaluate $y(0.1)$ using Taylor's series methods.
12. Use Gauss elimination method to solve the following system of equations:
$2 x+y+z=10,3 x+2 y+3 z=18, x+4 y+9 z=16$
13. Fit a poisson distribution to the following data and test the goodness of fit:

x	0	1	2	3	4
f	109	65	22	3	1

14. Use Adam's Moulton-Bashforth method to find y (1.4) given $\frac{d y}{d x}=x^{2}(1+y), y(1)=1$, $y(1.1)=1.233, y(1.2)=1.548$ and $y(1.3)=1.979$.
15. a) Compute $f^{\prime}(3)$ from the following table:

\boldsymbol{x}	1	2	4	8	10
$\mathbf{F}(\boldsymbol{x})$	0	1	5	21	27

b) Given the initial value problem : $y^{\prime}=1+y^{2}, y(0)=0$, Find $y(0.6)$ by Runge Kutta fourth order method taking $h=0.2$

SECTION-C

16. A river is 80 m wide. The depth ' y ' of the river at a distance ' x ' from one bank is given by following table:

\boldsymbol{x}	0	10	20	30	40	50	60	70	80
\boldsymbol{y}	0	4	7	9	12	15	14	8	3

Find the approximate area of cross-section of the river using Simpson's one - third rule.
17. a) A tank is discharging water through an orifice at a depth of x metre below the surface of the whose area is $\mathrm{A} m^{2}$. Following are the yalues of x for the corresponding values of A.

\mathbf{A}	1.257	1.39	1.52	1.65	1.809	1.962	2.123	2.295	2.462	2.650
\boldsymbol{x}	1.5	1.65	1.8	1.95	2.1	2.25	2.4	2.55	2.7	2.85

Using the formula (0.018) $\mathrm{T}=\int_{1.5}^{3.0} \frac{A}{\sqrt{x}} d x$, calculate T , the time (in seconds) for the level of the water to drop from 3.0 m to 1.5 m above the orifice.
b) Using Newton's divided difference formula, calculate the value of $f(6)$ from the following data:

x	4	5	7	10	11	13
$\mathrm{~F}(x)$	48	100	294	900	1210	2028

18. Find a positive value of (17) $)^{\frac{1}{3}}$ correct to four decimal places by Newton's Raphson's method.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

