

www.FirstRanker.com

www.FirstRanker.com

Roll No.		Г	П	Г	П	Г		Г		Total No. of Bosos : 0
ROII NO.	_	_	_		\perp	_	_	_	_	Total No. of Pages: 03

Total No. of Questions: 18

B.Tech. (EE) (2018 Batch) (Sem.-3) ELECTRICAL CIRCUIT ANALYSIS

Subject Code : BTEE-301-18 M.Code : 76381

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly:

- State Thevenin's theorem.
- What do you mean by dependent sources? Explain.
- Discuss the significance of phasor diagrams.
- What do you mean by steady state response? Explain.
- Differentiate between passband and stop band.
- What do you mean by network functions? Explain.
- What is the significance of two port networks? Explain.
- List the advantages of m-derived filters.
- What do you mean by poles and zeros? Explain.
- What is the need of Laplace transform? Discuss.

1 M-76381 (S2)-280

SECTION-B

 Calculate the current throught the resistors and through the voltage source of the circuit shown below by the principle of superposition.

- Design a constant-K low pass filter to be terminated in 600 ohm, having a cut-off frequency of 3kHz. Determine:
 - a) The frequency at which the filter offers attenuation of 17.372 dB.
 - b) Attenuation at 6kHz.
- 13. A series RLC circuit has R = 25 ohm, L = 0.04 H, C = 0.01 µF. Calculate the resonant frequency. If a 1 V source of same frequency as a frequency of resonance is applied to this circuit, calculate the frequencies at which the voltage across L and C are maximum. Also calculate the voltages.
- For the given polynomial F(s) = s⁶ + 5s⁵ + 11s⁴ + 25s³ + 36s² + 30s + 36. Determine the stability of the system using Routh-Hurwitz stability criterion.
- Find the current i(t) in a series RL circuit shown in the figure using Laplace transform. The switch K is closed at t = 0.

FIG.2

2 | M-76381 (S2)-280

SECTION-C

- 16. Synthesize first & second the Foster and Cauer forms of the LC driving point impedance function $\frac{(s^2+1)(s^2+16)}{s(s^2+4)}$.
- For the network shown in figure drive the open circuit impedance and short circuit admittance parameters also draw their equivalent circuits.

FIG.3

- 18. Discuss the following:
 - a) Reciprocity theorem
 - b) Norton's theorem

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76381 (S2)-280