

www.FirstRanker.com

www.FirstRanker.com

Roll No.							Total No. of Pages: 0	2
								_

Total No. of Questions: 18

B.Tech.(EE) (2018 Batch) (Sem.-3) ELECTROMAGNETIC FIELDS

Subject Code : BTEE-304-18 M.Code : 76384

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- Obtain the expression for Laplacian of a scalar field for cylindrical coordinate system.
- State the significance of displacement current in the context of Maxwell's equations.
- If a lightning stroke with current 50 kA occurs 100 m away from your house, calculate the magnetic flux density at your house due to the lightning stroke.
- 4. Show that in a good conductor, skin depth is always much shorter than its wavelength.
- 5. Find $\nabla \times (\overrightarrow{A} \times \overrightarrow{B})$
- Infinite line x = 3, z = 4 carries 16 nC/m and is located in free space above the conducting plane z = 0. Use method of images to obtain the induced surface charge density on the conducting plane at (5, -6, 0).
- State Gauss's law.
- Express Coulomb's law in vector form.
- Find the equivalent inductance of two coils connected in series. Assume the fluxes to be opposing each other.
- Distinguish between transformer and motional emf.

1 | M-76384 (S2)-641

www.FirstRanker.com

www.FirstRanker.com

SECTION-B

- 11. If $r = x \hat{a}_x + y \hat{a}_y + z \hat{a}_z$ is the position vector of (x, y, z), $r = |\vec{r}|$ and 'n' is an integer, evaluate
 - a) $\nabla \times (r^n r)$

- b) $\nabla^2 (\ln r)$
- Find D at P (6, 8, -10) because of
 - (i) Point charge of 50 mC at origin
 - (ii) A uniform line charge $\rho_L = 30 \mu C/m$ on z-axis.
 - (iii) A uniform surface charge density $\rho_s = 27.2 \,\mu\text{C/m}^2$ on a plane x = 12.
- 13. Prove that:

$$(\overrightarrow{A} \times \overrightarrow{B}). (\overrightarrow{C} \times \overrightarrow{D}) = \begin{bmatrix} \overrightarrow{\rightarrow} & \overrightarrow{\rightarrow} & \overrightarrow{\rightarrow} \\ A.C & B.C \\ \overrightarrow{\rightarrow} & \overrightarrow{\rightarrow} & \overrightarrow{\rightarrow} \\ A.D & B.D \end{bmatrix}$$

- Derive Biot Savart's law and Ampere's Circuital law from the concept of magnetic vector potential.
- 15. Obtain the intrinsic impedance for an EM wave propagating through perfect conductor.

SECTION-C

- 16. State Divergence theorem and verify the same for the vector field $\overrightarrow{A} = r^2 \stackrel{\circ}{a_r} + r \sin \theta$ $\cos \phi \stackrel{\circ}{a_\theta}$ over the surface of a quarter of a hemisphere defined by 0 < r < 3, $0 < \theta < \frac{\pi}{2}$, $0 < \phi < \frac{\pi}{2}$.
- 17 If $A=2\hat{a}_x+4\hat{a}_y$ and $B=6\hat{a}_y-4\hat{a}_z$. Find the smaller angle between them using cross product. Verify it using dot product. Apply triangle law of vector addition to establish Coulomb's law of force between two-point charges.
- 18. If $\overrightarrow{F} = 2\rho z \stackrel{\wedge}{a_\rho} + 3z \sin \phi \stackrel{\wedge}{a_\phi} 4\rho \cos \phi \stackrel{\wedge}{a_z}$ verify Stoke's theorem for the open surface defined by z = 1, $0 < \rho < 2$, $0 < \phi < 45^\circ$. What is a time harmonic field? Derive Ampere's circuital law for time harmonic fields.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76384 (S2)-641