Roll No. $\square$ Total No. of Pages : 02
Total No. of Questions: 18

# B.Tech. (Electrical \& Electronics Engg./Electronics \& Electrical Engg.) <br> (2018 Batch) (Sem.-3) <br> ELECTROMAGNETIC FIELDS <br> Subject Code : BTEEE-304-18 <br> M.Code : 76466 

Time: 3 Hrs.
Max. Marks: 60

## INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## SECTION-A

1. State divergence theorem.
2. Distinguish between transformer and motional emf.
3. Derive the expression for divergence of a vectorfield in cylindrical coordinate system.
4. Explain skin depth.
5. If $\vec{A}=2 \hat{a}_{x}+4 \hat{a}_{y}$ and $\vec{B}=6 \hat{a}_{y}-4 \hat{a}_{z}$. Find the smaller angle between them using cross product. Verify it using dot product.
6. Find $\vec{D}$ at $\mathrm{P}(6,8-10)$ due to a point charge of 50 mC at origin.
7. State the significance of displacement current in the context of Maxwell's equations.
8. Calculate the Poynting vector at the surface of a cylindrical conductor of radius ' $a$ ' and conductivity $\sigma$ carrying a steady current I distributed uniformly over its cross section.
9. Deduce Coulomb's law from Gauss's law.
10. Transform $\vec{A}=y \hat{a}_{x}+x \hat{a}_{y}+\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} \hat{a}_{z}$ to cylindrical coordinates.

## SECTION-B

11. If the two vectors are represented by :
$\vec{A}=5 \hat{a}_{r}+2 \hat{a}_{\theta}-\hat{a}_{\phi}$
$\vec{B}=\hat{a}_{r}-3 \hat{a}_{0}+4 \hat{a}_{\phi}$
Find :
I. $\vec{A} \times \vec{B}$
II. Angle between $\vec{A}$ and $\vec{B}$
III. Unit vector normal to the plane containing both $\vec{A}$ and $\vec{B}$
IV. Vector projection of $\vec{A}$ on $\vec{B}$.
12. Prove the vector identity : $\nabla^{2} \vec{A}=\nabla(\nabla \cdot \vec{A})-\nabla \times \nabla \times \vec{A}$.
13. State the necessity of magnetic vector potential for magneto-static fields.
14. Use Laplace equation to obtain the capacitance for a coaxial capacitor. Assume suitable coordinate system and boundary values.
15. A wire in the form of a parabola carries Current 3A. Calculate the magnitude of the magnetic field intensity at its focus if the distance from the focus to the apex (or vertex) is 20 cm .

## SECTION-C

16. Derive both differential and integral forms of Ampere's Circuital Law for time-varying and time-harmonic fields.
17. Derive the expressions for $\alpha, \beta$ and $\eta$ for a lossy dielectric medium.
18. A non-magnetic medium has an intrinsic impedance of $240 \angle 30^{\circ}$. Find -
I. Loss tangent
II. Dielectric constant
III. Complex permittivity
IV. Attenuation constant at 1 MHz .

## NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any

 page of Answer Sheet will lead to UMC against the Student.