

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages : 02

Total No. of Questions: 18

B.Tech. (Electrical & Electronics Engg./Electronics & Electrical Engg.)

(2018 Batch) (Sem.-3)
ELECTROMAGNETIC FIELDS

Subject Code : BTEEE-304-18 M.Code : 76466

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- State divergence theorem.
- Distinguish between transformer and motional emf.
- Derive the expression for divergence of a vector field in cylindrical coordinate system.
- Explain skin depth.
- 5. If $\overrightarrow{A} = 2 \overrightarrow{a}_x + 4 \overrightarrow{a}_y$ and $\overrightarrow{B} = 6 \overrightarrow{a}_y 4 \overrightarrow{a}_z$. Find the smaller angle between them using cross product. Verify it using dot product.
- 6. Find \overrightarrow{D} at P (6, 8 10) due to a point charge of 50 mC at origin.
- State the significance of displacement current in the context of Maxwell's equations.
- Calculate the Poynting vector at the surface of a cylindrical conductor of radius 'a' and conductivity σ carrying a steady current I distributed uniformly over its cross section.
- Deduce Coulomb's law from Gauss's law.
- 10. Transform $\overrightarrow{A} = y \overrightarrow{a}_x + x \overrightarrow{a}_y + \frac{x^2}{\sqrt{x^2 + y^2}} \overrightarrow{a}_z$ to cylindrical coordinates.

1 M-76466 (S2)-286

SECTION-B

11. If the two vectors are represented by :

$$\overrightarrow{A} = 5 \overrightarrow{a}_r + 2 \overrightarrow{a}_{\theta} - \overrightarrow{a}_{\phi}$$

$$\overrightarrow{B} = \overrightarrow{a_r} - 3\overrightarrow{a_0} + 4\overrightarrow{a_\phi}$$

Find:

- I. $\overrightarrow{A} \times \overrightarrow{B}$
- II. Angle between $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$
- III. Unit vector normal to the plane containing both $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$
- IV. Vector projection of \overrightarrow{A} on \overrightarrow{B} .
- 12. Prove the vector identity: $\nabla^2 \overrightarrow{A} = \nabla(\nabla \overrightarrow{A}) \nabla \times \nabla \times \overrightarrow{A}$.
- State the necessity of magnetic vector potential for magneto-static fields.
- Use Laplace equation to obtain the capacitance for a coaxial capacitor. Assume suitable coordinate system and boundary values.
- A wire in the form of a parabola carries current 3A. Calculate the magnitude of the magnetic field intensity at its focus if the distance from the focus to the apex (or vertex) is 20 cm.

SECTION-C

- Derive both differential and integral forms of Ampere's Circuital Law for time-varying and time-harmonic fields.
- Derive the expressions for α, β and η for a lossy dielectric medium.
- A non-magnetic medium has an intrinsic impedance of 240∠30°. Find
 - Loss tangent

- II. Dielectric constant
- III. Complex permittivity
- IV. Attenuation constant at 1 MHz.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76466 (S2)-286