

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages : 02

Total No. of Questions: 18

B.Tech. (Food Technology) (Sem.-3)

THERMODYNAMICS Subject Code: BTFT-217-19

M.Code: 78734

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- Define a thermodynamic system.
- Draw a p-T (pressure-temperature) diagram for a pure substance.
- Does wet steam obey laws of perfect gases?
- Explain clearly the difference between a non-flow and a steady flow process.
- 5. Why only in constant pressure non-flow process, the enthalpy change is equal to heat transfer?
- 6. What do you mean by 'Thermodynamic temperature'?
- 7. What are the characteristics of entropy?
- 8. What is the difference between an ideal and a perfect gas?
- 9. What is Joule-Thomson coefficient?
- Explain the importance of Maxwell relations in thermodynamics.

SECTION-B

11. Derive the following relations:

i)
$$u = a - T \left(\frac{\partial a}{\partial T} \right)_{v}$$
 ii) $h = g - T \left(\frac{\partial g}{\partial T} \right)_{p}$

Where a = Helmholtz function (per unit mass), and

g = Gibbs function (per unit mass).

1 M - 78734 (S2) - 797

www.FirstRanker.com

www.FirstRanker.com

- Derive the relationship between the two principal specific heats and characteristic gas constant for a perfect gas.
- Prove that all reversible engines operating between the same heat reservoirs have the same efficiency.
- 14. Determine the entropy change of 4kg of a perfect gas whose temperature varies from 127°C to 227°C during a constant volume process. The specific heat varies linearly with absolute temperature and is represented by the relation:

$$c_v = (0.48 + 0.0096 \text{ T}) \text{ kJ / kg K}.$$

Describe the process of formation of steam and give its graphical representation also.

SECTION-C

- 0.45 kg of carbon monoxide (28) and 1 kg of air at 15°C are contained in a vessel of volume 0.4 m³. Calculate the partial pressure of each constituent and the total pressure in the vessel. The gravimetric analysis of air is to be taken as 23.3% oxygen (32) and 76.7% nitrogen (28).
- 17. a) Prove that the rate of change of hat interchange per unit change of volume when gas is compressed or expanded is given by $\frac{\gamma n}{\gamma 1} \times \frac{pdv}{J}$
 - b) For isothermal flow and non-flow steady processes, prove that

$$\int_{1}^{2} p dv = -\int_{1}^{2} v . dp$$

Also state the assumptions made

- Write short notes on the following :
 - Perpetual motion machine of second kind.
 - Claperyon equation and its applications.
 - Helmholtz and Gibbs function.
 - iv) Measurement of dryness fraction.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M - 78734 (S2) - 797