

Roll No. Total No. of Pages: 03

Total No. of Questions: 18

B.Tech. (CSE) (2018 Batch) (Sem.-3)

MATHEMATICS-III
Subject Code: BTAM304-18

M.Code: 76438

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Solve the following:

- 1. Show that the limit for the function $f(x,y) = \frac{x^2 + y^2}{x^2 y^2}$ does not exists as $(x,y) \to (0,0)$.
- 2. Evaluate the integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} dy dx dz$.
- 3. Check the convergence of the following sequences whose nth term is given by $a_n = \left(\frac{3n+1}{3n-1}\right)^n.$
- 4. State Cauchy Integral test for convergence of a positive term infinite series.
- 5. Write down the Taylor's series expansion for $\sin x$ about $x = \frac{\pi}{2}$.
- 6. Solve by reducing into Clairaut's equation : $p = \log(px y)$, where $p = \frac{dy}{dx}$.
- 7. Solve the differential equation $\frac{dy}{dx} + y \cot x = x \csc x$
- 8. Determine whether the differential equation is exact

$$(x^2 + y^2 + 2x)dx + 2ydy = 0$$

1 M-76438 (S2)-543

9. Solve the differential equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

10. Find Particular integral for
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^{-x}$$

SECTION-B

- Using Method of Lagrange Multipliers, find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.
- Solve by changing order of integration : $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dxdy$, a is any positive constant.
- For what value(s) of x does the series converge (i) conditionally (ii) absolutely?

$$x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} - \dots$$
 to ∞ . Also find the interval of convergence.

$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$

15. Solve the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x.$ 5. a) Check the $\frac{1}{2}$

- - b) Find by double integration, the area lying inside the circle $r = a \sin \theta$ and outside the cardiode $r = a (1 - \cos \theta)$.

2 | M-76438 (S2)-543

- 17. a) Solve the differential equation $\frac{dy}{dx} + \frac{x}{1-x^2} y = x\sqrt{y}$.
 - b) Solve the differential $xyp^2 (x^2 + y^2) p + xy = 0$, where $p = \frac{dy}{dx}$.
- 18. a) Solve by Method of Variation of parameters $\frac{d^2y}{dx^2} + y = \sec x$.
 - b) Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \cos\ln(1+x)$.

www.FirstRanker.com

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76438 (S2)-543