Roll No. \square Total No. of Pages : 02
Total No. of Questions: 18
B.Tech. (Automation \& Robotics) (2018 Batch)
(Sem.-3)
MATHEMATICS-III
Subject Code : BTAR-303-18
M.Code : 76502

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. Define odd function and write Fourier series for an odd function satisfying Dirichlet conditions in the interval ($-\mathrm{c}, \mathrm{c}$).
2. Find Laplace inverse transform of $\frac{1}{s^{2}-3 s+2}$.
3. Find Laplace Transform of $t \sin 2 t$.
4. Write down the Bessel's equation.
5. Express $f(x)=2 x^{2}-x+1$ in terms of Lagendre function.
6. Form a partial differential equation by eliminating arbitrary functions from $z=f\left(\frac{y}{x}\right)$.
7. Solve the partial differential equation $p \tan x+q \tan y=\tan z$, where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$.
8. Evaluate $\int_{C} \frac{z-3}{z^{2}+2 z+5}, C:|z|=2$.
9. Write down the necessary and sufficient conditions for a function to be analytic.
10. Write down the mathematical function for Triangular wave form.

SECTION-B

11. Obtain the Fourier series for $f(x)=x \cos x$ in the interval $(-\pi, \pi)$.
12. Solve the differential equation using Method of Laplace transform

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=e^{-t}, y(0)=0, y^{\prime}(0)=1
$$

13. If α and β are the roots of the equation $\mathrm{J}_{n}(x)=0$, then prove that

$$
\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0, \text { if } \alpha \neq \beta
$$

14. Expand $f(z)=\frac{1}{z^{2}-4 z+3}$ in Laurents series for $1<|z|<3$.
15. Solve the Partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-6 \frac{\partial^{2} z}{\partial x \partial y}+9 \frac{\partial^{2} z}{\partial y^{2}}=12 x^{2}+x y
$$

SECTION-C

16. a) Find half-range cosine series for $f(x)=x+x^{2}$ in the interval $[0, \pi]$.
b) Find the Bilnear transformation which maps $z=1, i,-1$ onto the points $w=i, 0-i$.
17. A string is stretched between the fixed points $(0,0)$ and $(l, 0)$ and released at rest from the initial deflection given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 k}{l} x, & 0<x<l / 2 \\
\frac{2 k}{l}(l-x), & l / 2<x<l
\end{array}\right.
$$

Find the deflection in the string at anytime t.
18. Solve in series using Frobenius method :

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+\left(x^{2}+1\right) y=0
$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

