

www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages : 02

Total No. of Questions: 18

B.Tech. (Automation & Robotics) (2018 Batch) (Sem.-3)

MATHEMATICS-III Subject Code: BTAR-303-18 M.Code: 76502

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

 Define odd function and write Fourier series for an odd function satisfying Dirichlet conditions in the interval (-c,c).

2. Find Laplace inverse transform of $\frac{1}{s^2 - 3s + 2}$.

3. Find Laplace Transform of t sin 2t.

Write down the Bessel's equation.

5. Express $f(x) = 2x^2 - x + 1$ in terms of Lagendre function.

6. Form a partial differential equation by eliminating arbitrary functions from $z = f\left(\frac{y}{x}\right)$.

7. Solve the partial differential equation $p \tan x + q \tan y = \tan z$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

8. Evaluate $\int_{C} \frac{z-3}{z^2+2z+5}$, C:|z|=2.

Write down the necessary and sufficient conditions for a function to be analytic.

Write down the mathematical function for Triangular wave form.

1 | M-76502 (S2)-546

(S2) - 546

SECTION-B

- Obtain the Fourier series for f (x) = x cos x in the interval (-π, π).
- Solve the differential equation using Method of Laplace transform

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = e^{-t}, \ y(0) = 0, y'(0) = 1$$

13. If α and β are the roots of the equation $J_n(x) = 0$, then prove that

$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0, \text{ if } \alpha \neq \beta$$

- 14. Expand $f(z) = \frac{1}{z^2 4z + 3}$ in Laurents series for 1 < |z| < 3.
- 15. Solve the Partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 6 \frac{\partial^2 z}{\partial x \partial y} + 9 \frac{\partial^2 z}{\partial y^2} = 12 x^2 + xy$$

SECTION-C

- 16. a) Find half-range cosine series for $f(x) = x + x^2$ in the interval $[0, \pi]$.
 - b) Find the Bilnear transformation which maps z = 1, i, -1 onto the points w = i, 0 i.
- A string is stretched between the fixed points (0, 0) and (l, 0) and released at rest from the initial deflection given by

$$f(x) = \begin{cases} \frac{2k}{l}x, & 0 < x < l/2 \\ \frac{2k}{l}(l-x), & l/2 < x < l \end{cases}$$

Find the deflection in the string at anytime t.

Solve in series using Frobenius method :

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x^{2} + 1)y = 0$$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76502