www.FirstRanker.com

www.FirstRanker.com

Roll No. I rages . 02
Total No. of Questions:18
B.Tech. (Automation & Robotics) (2018 Batch) (Sem.–3) MATHEMATICS-III
Subject Code : BTAR-303-18
M.Code : 76502
Time : 3 Hrs. Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :
 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
 SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
SECTION-A
Write briefly :

- Define odd function and write Fourier series for an odd function satisfying Dirichlet 1. conditions in the interval (-c,c).
- Find Laplace inverse transform of $\frac{1}{s^2 3s + 2}$. 2.
- Find Laplace Transform of $t \sin 2t$. 3.
- Write down the Bessel's equation. 4.
- Express $f(x) = 2x^2 x + 1$ in terms of Lagendre function. 5.
- Form a partial differential equation by eliminating arbitrary functions from $z = f\left(\frac{y}{r}\right)$. 6.
- Solve the partial differential equation p tan x + q tan $y = \tan z$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. 7.
- Evaluate $\int_C \frac{z-3}{z^2+2z+5}$, C :|z|=2. 8.
- 9. Write down the necessary and sufficient conditions for a function to be analytic.
- 10. Write down the mathematical function for Triangular wave form.

1 M-76502

(S2)-546

www.FirstRanker.com

FirstRanker.com

Total No. of Pages : 02

D - 11 N -

www.FirstRanker.com

SECTION-B

- 11. Obtain the Fourier series for $f(x) = x \cos x$ in the interval $(-\pi, \pi)$.
- 12. Solve the differential equation using Method of Laplace transform

$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 2y = e^{-t}, \ y(0) = 0, y'(0) = 1$$

13. If α and β are the roots of the equation $J_n(x) = 0$, then prove that

$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0, \text{ if } \alpha \neq \beta$$

- 14. Expand $f(z) = \frac{1}{z^2 4z + 3}$ in Laurents series for 1 < |z| < 3.
- 15. Solve the Partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 6 \frac{\partial^2 z}{\partial x \partial y} + 9 \frac{\partial^2 z}{\partial y^2} = 12 x^2 + xy$$

- **SECTION-C** 16. a) Find half-range cosine series for $f(x) = x + x^2$ in the interval $[0, \pi]$.
 - b) Find the Bilnear transformation which maps z = 1, i, -1 onto the points w = i, 0 i.
- 17. A string is stretched between the fixed points (0, 0) and (l, 0) and released at rest from the initial deflection given by

$$f(x) = \begin{cases} \frac{2k}{l}x, & 0 < x < l/2\\ \frac{2k}{l}(l-x), & l/2 < x < l \end{cases}$$

Find the deflection in the string at anytime t.

18. Solve in series using Frobenius method :

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x^{2} + 1)y = 0$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76502

(S2)-546