Roll No.
Total No. of Pages : 03
Total No. of Questions: 18

B.Tech. (Automation \& Robotics) (2018 Batch) (Sem.-3) KINEMATICS AND THEORY OF MACHINES

Subject Code : BTAR-305-18
M.Code : 76504

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. Differentiate between flexible link and fluid link.
2. Differentiate between lower pair and higher pair.
3. What is the significance of degrees of freedom of a kinematic chain when it functions as a mechanism? Give examples.
4. State the 'Aronhold Kennedy's Theorem' of three instantaneous centres.
5. What is the Coriolis acceleration component?
6. Why a roller follower is preferred to that of a knife-edged follower?
7. Explain the terms :
a) Module
b) Pressure angle
8. Differentiate between epi-cycloid and hypo-cycloid.
9. What do you understand by Laws of friction?
10. Explain transmission angle of a mechanism.

SECTION-B

11. A crank and slotted lever mechanism used in a shaper has a centre distance of 300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank. The radius of the crank is 120 mm . Find the ratio of the time of cutting to the time of return stroke.
12. Using relative velocity approach find the velocity of point D in Fig. $1, \omega_{2}=20 \mathrm{rad} / \mathrm{sec}$.
$\mathrm{O}_{2} \mathrm{O}_{4}=350 \mathrm{~mm}, \mathrm{BD}=160 \mathrm{~mm}$
$\mathrm{O}_{2} \mathrm{~B}=140 \mathrm{~mm}, \mathrm{CD}=100 \mathrm{~mm}$
$\mathrm{BC}=250 \mathrm{~mm}, \mathrm{O}_{4} \mathrm{C}=210 \mathrm{~mm}$

FIG.

13. Derive an expression for minimum number of teeth required on a pinion to avoid interference when it gears with a rack.
14. Find the force required to move a load of 300 N up a rough plane, the force being applied parallel to the plane. The inclination of the plane is such that a force of 60 N inclined at 30° to a similar smooth plane would keep the same load in equilibrium. The coefficient of friction is 0.3 .
15. Explain the following :
a) Angle of friction.
b) Coefficient of friction.

SECTION-C

16. A cam drives a flat reciprocating follower in the following manner :

During first 120° rotation of the cam, follower moves outwards through a distance of 20 mm with simple harmonic motion. The follower dwells during next 30° of cam rotation. During next 120° of cam rotation, the follower moves inwards with simple harmonic motion. The follower dwells for the next 90° of cam rotation. The minimum radius of the cam is 25 mm . Draw the profile of the cam.
17. An Epicyclic gear train, as shown in Fig. 2, has a sun wheel S of 30 teeth and two planet wheels P-P of 50 teeth. The planet wheels mesh with the internal teeth of a fixed annulus A. The driving shaft carrying the sunwheel, transmits 4 kW at $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The driven shaft is connected to an arm which carries the planet wheels. Determine the speed of the driven shaft and the torque transmitted, if the overall efficiency is 95%.

FIG. 2
18. Write notes on :
a) Acceleration in the Slider Crank Mechanism
b) Kinematic Chain

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

