Roll No. \square Total No. of Pages : 03
Total No. of Questions: 18
B.Tech.(ECE) (2018 Batch) (Sem.-3)
MATHEMATICS III
Subject Code : BTAM-303-18
M.Code : 76448

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

1. If a random variable has a Poisson distribution such that $P(1)=P(2)$. Find the mean of the distribution.
2. Find the Laplace transform of $t^{3} e^{-3 t}$.
3. Represent $f(t)=\sin 2 t, 2 \pi<t<4 \pi$ and 0 otherwise, in terms of unit step function.
4. State convolution theorem of Fourier transform.
5. Find the Z-transform of $e^{t} \sin 2 t$.
6. Write the relation between Fourier and Laplace transforms.
7. Define discrete and continuous random variables.
8. Define Rank correlation.
9. State initial and final value theorems of Z-transform.
10. Define Binomial and Poisson distribution functions.

SECTION-B

11. Evaluate :

$$
L\left\{e^{-t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}
$$

12. Find the Fourier transform of :

$$
e^{-2(x-3)^{2}}
$$

13. Using the Z-transform, solve :

$$
u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}
$$

with $u_{0}=0, u_{1}=1$.
14. The two regression equations of the variables x and y are $x=19.13-0.87 y$ and $y=11.64-0.50 x$. Find (i) mean of x and y (ii) the correlation co-efficient between x and y.
15. The intelligence quotients (IQ) of 16 students from B. Tech. IInd year showed a mean of 107 and a standard deviation of 10 , while the IQs of 14 students from B. Tech. 1st year showed a mean of 112 and a standard deviation of 8 . Is there a significant difference between the IQs of the two groups at significance levels of 0.05 ? Given that critical value at 28 degree of freedom with 5% level ofsignificance is 2.05 .

SECTION-C

16. a) Apply Convolution theorem to evaluate

$$
L^{-1}\left[\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right]
$$

b) Find the inverse Laplace transform of

$$
\frac{s e^{-s / 2}+\pi e^{-s}}{s^{2}+\pi^{2}}
$$

17. If $f(x)=\sin x, 0 \leq x \leq \pi$ and $f(x)=0,-\pi \leq x \leq 0$, Prove that

$$
f(x)=\frac{1}{\pi}+\frac{\sin x}{2}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}
$$

Hence show that :

$$
\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots-\infty=\frac{\pi-2}{4}
$$

18. Find the coefficient of correlation and obtain the lines of regression from the given data

\mathbf{X}	62	64	65	69	70	71	72	74
\mathbf{Y}	126	125	139	145	165	152	180	208

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

