

www.FirstRanker.com

www.FirstRanker.com

Total No. of Questions: 18

B.Tech. (ECE) (Sem.-3)
NETWORK THEORY

Subject Code: UC-BTEC-304-19 M.Code: 78749

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- Relate unit impulse, unit step and unit ramp signals?
- Draw waveform for the function f(t) = u(t) r(t-1) + r(t-2).
- Differentiate between series and parallel resonance.
- Draw h-model for BJT and write its characteristics equations.
- Under what conditions we can transfer maximum power to the load?
- How Routh-Hurwitz criterion is helpful in determining of system stability?
- 7. What are Dirichlet's conditions for Fourier Series?
- Define image impedance for a 2-port network.
- What is current division rule?
- What are transmission parameters? Give characteristic equations.

SECTION-B

Solve following differential equation using Laplace Transform

$$y'' - 5y' + 6y = 0$$
, $y'(0) = 2$, $y(0) = 0$

 In reference to following star-delta equivalent circuits, determine R_a, R_b and R_c in delta connections when R₁ = 6Ω, R₁ = 18Ω and R₁ = 3Ω.

FIG. 1

Determine Z-parameters for following 2-port network.

FIG. 2

 Determine and plot output voltage V₀ (t) in following circuit when input voltage signal is given by V_i (t) = u (t) - u (t-1)

FIG. 3

15. Determine if following system H(s) is a stable system or not. Explain with reasons.

$$H(s) = \frac{s^4 + 2s^3 + s^2 + 3s + 4}{s^5 + 3s^4 + 2s^3 + s^2 + 2s + 1}$$

2 | M - 78749

SECTION-C

- 16. Derive conversion formulas for 2-port networks:
 - a) h-parameters into ABCD-parameters
 - b) ABCD-parameters into Z-parameters
- Synthesize following 1-port networks

a)
$$Z(s) = \frac{10(s^2+4)(s^2+25)}{s(s^2+9)}$$
 using Foster-1 Form

b)
$$Z(s) = \frac{s^3 + 4s}{s^4 + 20s + 9}$$
 using Cauer-1 Form

- a) Design constant-k (T-section & π-section) Low Pass Filters for given cut-off frequency f_c = 2000 Hz and design impedance R_o = 400Ω.
 - b) What are the advantages and disadvantages of both constant-k and m-derived filters?

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M - 78749 (S2) - 694