Firstranker's choice Physicsww.FirstRanker.com

www.FirstRanker.com

Topic: - PHY MSC S2

 An atomic transition line with wavelength 350 nm is observed to be split into three components in a spectrum of light from a sunspot. Adjacent components are separated by 1.7 pm. Determine the strength of the magnetic field in the sunspot

[Question ID = 6662]

- 3 T [Option ID = 26642]
- 2. 0.03 T [Option ID = 26643]
- 3. 3.3 T [Option ID = 26644]
- 4. 0.3 T [Option ID = 26645]

Correct Answer :-

- 0.3 T [Option ID = 26645]
- which one of the following is correct in respect of an electron and a proton having a same de-Broglie wavelength of 2 Å
 [Question ID = 6663]
- 1. Both have same kinetic energy [Option ID = 26646]
- 2. Both have same velocity [Option ID = 26647]
- 3. Both have same momentum [Option ID = 26648]
- 4. The kinetic energy of proton is more than that of electron [Option ID = 26649]

Correct Answer :-

- Both have same momentum [Option ID = 26648]
- If r_p & r_H are the radius and E_p & E_H are the energy of an electron in the nth orbit of positronium atom and hydrogen atom respectively, then

[Question ID = 6664]

1. $r_p = 2 r_H$ and $E_p = E_H/2$

[Option ID = 26650]

2. $r_p = 2 r_H$ and $E_p = 2 E_H$

[Option ID = 26651]

3. $r_p = 2 r_H$ and $E_p = E_H/4$

[Option ID = 26652]

r_p = r_H and E_p = 2 E_H

[Option ID = 26653]

Correct Answer :-

r_p = 2 r_H and E_p = E_H/2

[Option ID = 26650]

4) An X-ray beam of wavelength 0.16 nm is incident on a set of planes of a certain crystal. The first Bragg reflection is observed for an incidence angle of 30°. What is the corresponding inter planar spacing?

[Question ID = 6669]

- 1. 0.16 nm [Option ID = 26670]
- 2. 0.67 nm [Option ID = 26671]
- 3. 1.02 nm [Option ID = 26672]
- 4. 0.89 nm [Option ID = 26673]

Correct Answer :-

- 0.16 nm [Option ID = 26670]
- What is the velocity of conduction electron of silver having Fermi energy 5.52 eV [Question ID = 6670]
- 1. 1.39 × 10⁶ m/s [Option ID = 26674]
- 2. 2.39 x 106 m/s [Option ID = 26675]
- 3. 0.89 × 106 m/s [Option ID = 26676]
- 4. 0 [Option ID = 26677]

Correct Answer :-

- 1.39 × 10⁶ m/s [Option ID = 26674]

www.FirstRanker.com

Correct Answer :-

3.2 x 10¹⁰ m⁻³ [Option ID = 26678]

3.2 x 10¹¹ m⁻³ [Option ID = 26681]

7) The dispersion relation for a one-dimensional monoatomic lattice chain is given by the equation, $\omega = \frac{z}{a} v_5 |\sin(\frac{n\alpha}{2})|$, where, 'a' is the interatomic spacing, $K=\frac{2\pi}{3}$ and v_s has the dimension of velocity. The relation between the phase velocity VP and group velocity Vg in the long wavelength limit is given by

[Question ID = 6674]

V_P = V_g

[Option ID = 26690]

2. $V_P = 2V_g$

[Option ID = 26691]

3. $V_P = V_g/2$

[Option ID = 26692]

V_p × V_g

[Option ID = 26693]

Correct Answer :-

V_P = V_g

[Option ID = 26690]

8) The largest wavelength of light falling on double slits separated by 1.5 µm, for which there is a first order maximum is in

[Question ID = 6676]

- 1. ultraviolet range [Option ID = 26698]
- 2. visible range [Option ID = 26699]
- 3. infrared range [Option ID = 26700]
- 4. X-ray range [Option ID = 26701]

Correct Answer :-

infrared range [Option ID = 26700]

9) In a multi-stage R-C coupled amplifier, the coupling capacitor [Question ID = 6680]

limits the low frequency response [Option ID = 26714]

- 2. limits the high frequency response [Option ID = 26715]
- 3. reduces the amplitude of input signal [Option ID = 26716]
- 4. blocks d.c. component without affecting the frequency response [Option ID = 26717]

Correct Answer :-

. blocks d.c. component without affecting the frequency response [Option ID = 26717]

 An AM transmitter is coupled to an aerial. The input current is found to be 5 A. With modulation the current value increases to 5.9 A. The depth of modulation is

[Question ID = 6681]

- 83.4% [Option ID = 26718]
- 88.6% [Option ID = 26719]
- 3. 78.2% [Option ID = 26720]
- 74.3% [Option ID = 26721]

Correct Answer :-

88.6% [Option ID = 26719]

11) Hexadecimal equivalent of a digital number 10011101 is

[Question ID = 6683]

- H913 [Option ID = 26726]
- 2. 9D [Option ID = 26727]
- 3. AE [Option ID = 26728]
- 157 [Option ID = 26729]

Correct Answer :-

9D [Option ID = 26727]

www.FirstRanker.com

12) If the doping concentration in a Si-Zener diode is increased, the Zener breakdown voltage [Question ID = 6684]

www.FirstRanker.com

Correct Answer :-

Decreases [Option ID = 26730]

13) Which one of the following is an example of doubly magic nuclei

[Question ID = 6685]

1. 180

[Option ID = 26734]

2. ⁴⁸Ca

[Option ID = 26735]

3 1245n

[Option ID = 26736]

20404

[Option ID = 26737]

Correct Answer :-

⁴⁶Ca

[Option ID = 26735]

14) Which radiation has maximum ionization power?

[Question ID = 6686]

- 1. Alpha [Option ID = 26738]
- 2. Beta [Option ID = 26739]
- 3. Neutron [Option ID = 26740]
- 4. Gamma [Option ID = 26741]

Correct Answer :-

Alpha [Option ID = 26738]

For beta-minus decay, which statement is TRUE? [Question ID = 6688]

[Question ID = 6666]

- Daughter nuclide atomic mass (A_D) is more than that of the parent nuclide atomic mass (A_D) [Option ID = 26746]
- Daughter nuclide atomic number (Z_D) is same that of the parent nuclide atomic number (Z_P) [Option ID = 26747]
- 3. Daughter nuclide neutron number (No) is less than that of the parent nuclide neutron number (No) [Option ID = 26748]
- 4. Daughter nuclide neutron number (Np) is same that of the parent nuclide neutron number(Np) [Option ID = 26749]

Correct Answer :-

Daughter nuclide neutron number (N_D) is less than that of the parent nuclide neutron number (N_D) [Option ID = 26748]

16) The probability that student A solves the problem is 1/2, and that of B is 2/3. What is the probability that the problem is solved?

[Question ID = 6689]

1. 4/6

[Option ID = 26750]

2. 1/3

[Option ID = 26751]

3. 5/6

[Option ID = 26752]

4. none of these

[Option ID = 26753]

Correct Answer :-

5/6

[Option ID = 26752]

17) Are the three points whose position vectors are 2i+3j-4k, i-2j+3k and -7j+10k collinear?

[Question ID = 6690]

. Yes

2. No

[Option ID = 26754]

www.FirstRanker.com

4. None of these

[Option ID = 26757]

Correct Answer :-

Yes

[Option ID = 26754]

18) The number of independent fundamental solutions in n-th order ordinary differential equation is

[Question ID = 6692]

- 1. n-1 [Option ID = 26762]
- n [Option ID = 26763]
- 3. n+1 [Option ID = 26764]
- 4. 2n [Option ID = 26765]

Correct Answer :-

n [Option ID = 26763]

19) If $z_1 = 2 - 3i$ and $z_2 = 4 + 6i$ then find $\frac{z_1}{z_2}$

[Question ID = 6693]

1. -5/26-61/13

[Option ID = 26766]

2. -5/26+61/13

[Option ID = 26767]

3. 8+18i

[Option ID = 26768]

4. 8-18i

[Option ID = 26769]

Correct Answer :-

-5/26-6i/13

[Option ID = 26766]

The rank of the following matrix $\begin{pmatrix} 1 & 5 & 1 \\ 2 & 1 & 1 \\ 2 & 6 & 2 \end{pmatrix}$

[Question ID = 6699]

1. 1

[Option ID = 26790]

2. 2

[Option ID = 26791]

3. 3

[Option ID = 26792]

4. 4

[Option ID = 26793]

Correct Answer :-

2

[Option ID = 26791]

21) Two Carnot engines X and Y are operating in series. The engine X receives heat at 1200 K and rejects to a reservoir at a temperature T. The second engine Y receives the heat rejected by X and in turn rejects to a heat reservoir at 300 K. Calculate the temperature T (in Kelvin) for the situation when the efficiency of the engines is same

[Question ID = 6704]

- 600 K [Option ID = 26810]
- 750 K [Option ID = 26811]
 0 [Option ID = 26812]
- 4. 450 K [Option ID = 26813]

Correct Answer :-

• 600 K [Option ID = 26810]

www.FirstRanker.com

22) A square conducting loop of mass m, side I and resistance R is dropped into a region with a uniform horizontal magnetic

Firstranker's choice [Question ID = 7330]

www.FirstRanker.com

www.FirstRanker.com

$$1. v = \frac{mgR}{(Bl)^2}$$

[Option ID = 29314]

$$v = \frac{2mgR}{B^2l^2}$$

[Option ID = 29315]

$$v = \frac{mgR}{2B^2l^2}$$

[Option ID = 29316]

4. None of these

[Option ID = 29317]

Correct Answer :-

•
$$v = \frac{mgR}{(Bl)^2}$$

[Option ID = 29314]

23) An ideal inductor, a resistor of resistance R Ohms and a capacitor with adjustable capacitance are connected in series to an alternating voltage with an effective value of V Volts and with frequency of f Hz. The current flowing through the circuit when the capacitance of the capacitor is set to C_1 is the same as when the capacitance of the capacitor is set to C_2 , $C_2 > C_1$. The inductance of the inductor L is given by

[Question ID = 7331]

1.
$$\frac{1}{8\pi^2 f^2} \frac{C_1 + C_2}{C_1 C_2}$$

2.
$$\frac{1}{8\pi^2 f^2} \frac{C_1 C_2}{C_1 + C_2}$$

3.
$$\frac{1}{2\pi f} \frac{C_1 C_2}{C_1 - C_2}$$

[Option ID = 29320]

4.
$$\frac{1}{2\pi^2 f^2 R(C_1 - C_2)} \frac{C_1 C_2}{C_1 + C_2}$$

[Option ID = 29321]

Correct Answer :-

•
$$\frac{1}{8\pi^2 f^2} \frac{C_1 + C_2}{C_1 C_2}$$

[Option ID = 29318]

 A cylinder of length L is made up of an inner core of steel of radius r₁ and an outer sheath of copper of thickness r₁. The resistivities of steel and copper are ρ_1 and ρ_2 respectively. The total resistance of the cylinder is

[Question ID = 7332]

1.
$$\frac{(\rho_1 \rho_2)L}{\pi r_1^2(3\rho_1 + \rho_2)}$$

2.
$$\frac{(3\rho_1 + \rho_2)L}{\pi r_1^2}$$

[Option ID = 29323]

3. $(\rho_1 + \rho_2)L$

www.FirstRanker.com

[Option ID = 29324]

Cannot be determined from the information provided above

www.FirstRanker.com

• $\frac{(\rho_1 \rho_2)L}{\pi r_1^2(3\rho_1 + \rho_2)}$

[Option ID = 29322]

25) A meter stick is at an angle of 45° to the x' axis in its rest frame. The rod moves with a speed of \(\frac{1}{\sqrt{2}}c\) along the \(+\chi\) direction w.r.t, a frame S. The length of the rod in S is

[Question ID = 7333]

1.
$$\frac{\sqrt{3}}{2}$$
 meters

[Option ID = 29326]

$$\frac{\sqrt{5}}{3}$$
 meters

[Option ID = 29327]

$$\frac{\sqrt{2}}{3}$$
 meters

[Option ID = 29328]

4.
$$\frac{2}{3}$$
 meters

[Option ID = 29329]

Correct Answer :-

•
$$\frac{\sqrt{3}}{2}$$
 meters

[Option ID = 29326]

26) An AC generator with output and frequency f is connected to the plates of an air filled parallel plate capacitor of plate area A and plate separation d. The maximum value of the displacement current is

[Question ID = 7334]

$$2\pi \in_0 fVA$$

[Option ID = 29330]

[Option ID = 29331]

$$\frac{2\pi f \varepsilon_0 A}{2\pi f \varepsilon_0 A}$$

[Option ID = 29332]

4. Cannot be determined from the information provided

[Option ID = 29333]

Correct Answer :-

•
$$\frac{2\pi \in_0 fVA}{d}$$

[Option ID = 29330]

27) An electron enters a uniform magnetic field of flux density 1.2 Wb/m2. Find the energy difference in (eV), between electrons having spins parallel and anti-parallel to the field. (Given: $\mu_R=9.3~\chi~10^{-24}$ J/T)

[Question ID = 7335]

3 .95 x 10⁻⁵ eV

[Option ID = 29334]

13.95 x 10⁻⁵eV

www.FirstRanker.com

[Option ID = 29337]

Correct Answer :-

33.95 x 10⁻⁵ eV

13.95 x 10⁻⁵eV

[Option ID = 29335]

28) Using the vector atom model, determine the possible values of the angular momentum of an electron in f- shell

[Question ID = 7336]

1.
$$\frac{3\sqrt{7}}{2}$$
 h , $\frac{\sqrt{35}}{2}$ h

2.
$$\frac{[\text{Option ID} = 29338]}{2\sqrt{7}} \hbar , \frac{\sqrt{25}}{2} \hbar$$

3.
$$\frac{[\text{Option ID} = 29339]}{\frac{5\sqrt{7}}{2}} \frac{h}{h}$$
, $\frac{\sqrt{15}}{2}$

[Option ID = 29340]
4.
$$\frac{\sqrt{7}}{2}$$
 ħ , $\frac{\sqrt{5}}{2}$ ħ

[Option ID = 29341]

Correct Answer :-

[Option ID = 29338]

²⁹⁾ The two eigenvalues of the matrix $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

[Question ID = 7337]

1. 2,0

3. 1,2

[Option ID = 29344]

[Option ID = 29345]

Correct Answer :-

[Option ID = 29342]

30) The commutator, $\pi[\chi^2, p_y]$, is equal to

[Question ID = 7338]

1. ihx

[Option ID = 29346]

2 2ihx

[Option ID = 29347]

2ihp_x

[Option ID = 29348]

4. Zero

[Option ID = 29349]

Correct Answer :-

[Option ID = 29346]

www.FirstRanker.com

31) A particle of mass m is confined in the ground state of a one dimensional box extending from x = -2L to x = +2L. The wave function of the particle in this state is

www.FirstRanker.com

[Question ID = 7339]

1.
$$\frac{\hbar^2 \pi^2}{32mL^2}$$

[Option ID = 29350]

$$2. \frac{\hbar^2 \pi^2}{2 mL^2}$$

[Option ID = 29351]

3.
$$\frac{\hbar^2 \pi^2}{4 \, mL^2}$$

[Option ID = 29352]

$$\hbar^2\pi^2$$

 $16mL^2$

[Option ID = 29353]

Correct Answer :-

• $\frac{\hbar^2 \pi^2}{32mL^2}$

[Option ID = 29350]

32) The normalized wave functions ψ_1 and ψ_2 , correspond to the ground state and the first excited states of a particle in a potential. The operator \hat{A} acts on the wave functions as $\hat{A}\psi_1 = \psi_2$ and $\hat{A}\psi_2 = \psi_1$. The expectation value of the operator \hat{A} for the state $\psi = (3\psi_1 + 4\psi_2)/5$ is

[Question ID = 7340]

- 1. 0.96 [Option ID = 29354]
- 2. 0.32 [Option ID = 29355]
- 3. 0 [Option ID = 29356]
- 4. 0.75 [Option ID = 29357]

Correct Answer :-

0.96 [Option ID = 29354]

33) The primitive translation vector of a two-dimensional lattice are a=2l+j, b=2j. The primitive translation vector of its reciprocal lattice in x-direction is given by

[Question ID = 7341]

1.
$$a^* = \pi \hat{\imath}$$

$$a^* = 2\pi \hat{i}$$

[Option ID = 29359]

3.
$$a^* = i$$

[Option ID = 29360]

4.
$$a^* = \pi \hat{j}$$

[Option ID = 29361]

Correct Answer :-

[Option ID = 29358]

34) The mean drift speed v_d of an electron in an applied electric field E with electron density 'n' can be expressed as

[Question ID = 7342]

1.
$$v_d = |\sigma E/ne|$$

[Option ID = 29362]

2. $v_d = |\sigma E/e|$

www.FirstRanker.com

```
4. none of these
```

[Option ID = 29365]

Correct Answer :-

• $v_d = |\sigma E/ne|$

[Option ID = 29362]

35) An un-damped oscillator has time period $\tau_0 = 1.0$ sec. Now a little damping is added so that its time period changes to $\tau_1 = 1.001$ sec. By what factor will the amplitude of oscillation decrease after 10 cycles?

[Question ID = 7343]

1. ≈ 17

[Option ID = 29366]

2. ≈ 1

[Option ID = 29367]

3. ≈ 1/17

[Option ID = 29368]

4. None of these

[Option ID = 29369]

Correct Answer :-

≈ 17

[Option ID = 29366]

36) A kilogram of water has a constant heat capacity of 4.2 kJ/K/kg over the temperature range 0°C to 100°C. The water was initially at 0°C and is brought into contact with a heat reservoir at 100°C. When the water is in thermal equilibrium with the heat reservoir calculate the change in entropy of the universe (Water + Reservoir).

[Question ID = 7344]

1. 184.8 J/K

[Option ID = 29370]

2. 2437.8 J/K

[Option ID = 29371]

3. OJ/K

[Option ID = 29372]

4. 1310.8 J/K

[Option ID = 29373]

Correct Answer :-

184.8 J/K

[Option ID = 29370]

37) Two identical finite bodies of constant volume and of constant heat capacity at constant volume C_v, are used to drive a heat engine. Their initial temperatures are T₁ and T₂. The maximum amount of work which can be obtained from the system is

[Question ID = 7345]

1.
$$C_v \{ 2 (T_1 T_2)^{1/2} - (T_1 + T_2) \}$$

[Option ID = 29374]

2.
$$C_{\nu} (T_1 + T_2)$$

[Option ID = 29375]

3. $C_v (T_1 T_2)^{1/2}$

[Option ID = 29376]

4. 0

[Option ID = 29377]

www.FirstRanker.com

38) For a system of bosons, we can write the Bose-Einstein distribution function as $f(E_i) = \frac{1}{\exp(\alpha + \beta E_i) - 1}$, Where, $\beta = 1/k_B T$ and $\alpha = \mu/k_B T$ (kg = Boltzmann constant). If μ represents the chemical potential, then which one of the following is true?

[Question ID = 7346]

1.
$$\mu \le 0$$

[Option ID = 29378]

μ ≥ 0

[Option ID = 29379]

3. $\mu \le 1$

[Option ID = 29380]

4. µ ≥ 1

[Option ID = 29381]

Correct Answer :-

µ ≥ 0

[Option ID = 29379]

39) An ideal capacitor C is charged to a voltage Vo and connected at t = 0 across an ideal inductor L (The circuit now consists of a capacitor and an inductor only). If the resonant frequency

$$\omega_o = \frac{1}{\sqrt{LC}}$$

, the voltage across the capacitor at time t > 0 is given by

[Question ID = 7347]

- V_o [Option ID = 29382]
- V_o cos(ω_ot) [Option ID = 29383]
- 3. $V_0 \sin(\omega_0 t)$ [Option ID = 29384]
- 4. $V_o e^{-\omega_0 t} cos (\omega_o t)$

[Option ID = 29385]

Correct Answer :-

V_a cos(ω_at) [Option ID = 29383]

Magnetic moment of proton (μ_n) in terms of nuclear magneton (μ_N) is

[Question ID = 7348]

1.
$$\mu_p = 1.9 \mu_N$$

$$2. \mu_p = 2.7 \mu_N$$

[Option ID = 29387]

$$\mu_p = 3.8 \mu_N$$

[Option ID = 29388]

4.
$$\mu_p = 5.4 \mu_N$$

[Option ID = 29389]

Correct Answer :-

•
$$\mu_p = 2.7 \mu_N$$

[Option ID = 29387]

Find the eigenvalues of A+4I where I is identity matrix and A = $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$

[Question ID = 7349]

1. 1,3

[Option ID = 29390]

www.FirstRanker.com

[Option ID = 29393]

Correct Answer :-

[Option ID = 29391]

The limit $\lim_{n\to\infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}$ is

[Question ID = 7350]

1.
$$\frac{1}{e}$$

3 0

4. e

Correct Answer :-

[Option ID = 29395]

43)
$$\left(\frac{1+i}{\sqrt{2}}\right)^{49}$$

is equal to

1.
$$\left(\frac{1+i}{\sqrt{2}}\right)$$

$$2. \left(\frac{2+98i}{\sqrt{2^{49}}}\right)$$

3.
$$\left(\frac{1-i}{\sqrt{2}}\right)$$

4.
$$\left(\frac{2-98i}{\sqrt{249}}\right)$$

[Option ID = 29401]

Correct Answer :-

•
$$\left(\frac{1+i}{\sqrt{2}}\right)$$

[Option ID = 29398]

⁴⁴⁾
$$\sin\left(\frac{\pi}{4}+i\right)$$
 is equal to

[Question ID = 7352]

1.
$$\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right) + \frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right)i$$

2.
$$\frac{\sqrt{2}}{4}\left(e + \frac{1}{e}\right) + \frac{\sqrt{2}}{4}\left(e - \frac{1}{e}\right)i$$

www.FirstRanker.com

4.
$$\frac{\sqrt{2}}{4} \left(e - \frac{1}{e} \right) + \frac{\sqrt{2}}{4} \left(e + \frac{1}{e} \right) i$$

[Option ID = 29405]

Correct Answer :-

•
$$\frac{\sqrt{2}}{4}\left(e + \frac{1}{e}\right) + \frac{\sqrt{2}}{4}\left(e - \frac{1}{e}\right)i$$

[Option ID = 29403]

45) Two students are working on a math problem. The first student has probability ½ of solving it and the second student has probability 14 of solving it. What is the probability that at least one of them solves the problem?

[Question ID = 7353]

[Option ID = 29406]

[Option ID = 29407]

[Option ID = 29408]

[Option ID = 29409]

Correct Answer :-

[Option ID = 29408]

 $\frac{1}{z^2-3z+2}$ in the region defined by |z|>2 is 46) Expansion of the function f(z) =

[Question ID = 7354]

1.
$$z^{-2} + 3z^{-4} + 7z^{-6} + \dots$$

$$z^{-2} + 3z^{-3} + 7z^{-4} + \dots$$

[Option ID = 29411]
3.
$$z^{-1} + 3z^{-2} + 7z^{-3} + \dots$$

[Option ID = 29412]

4.
$$z^{-3} + 3z^{-4} + 7z^{-5} + \dots$$

[Option ID = 29413]

Correct Answer :-

•
$$z^{-2} + 3z^{-3} + 7z^{-4} + \dots$$

[Option ID = 29411]

47) The Fourier transformation of the function f(x) = 1 for |x| < a

$$= 0$$
 for $|x| > a$

is

[Question ID = 7355]

1.
$$\int_{\pi}^{2} \frac{\sin sa}{s}$$

www.FirstRanker.com

3.
$$\sqrt{\frac{\pi}{2}} \frac{\sin sa}{s}$$

4.
$$\sqrt{\frac{\pi}{2}} \frac{\cos sa}{s}$$

[Option ID = 29417]

Correct Answer :-

$$-\sqrt{\frac{2}{\pi}} \frac{\sin sa}{s}$$

[Option ID = 29414]

48) The Laplace transformation of the function $f(t)=2^t$ is

$$\frac{\ln 2}{s - \ln 2}$$

$$\frac{1}{s - \ln 2}$$

$$\frac{1}{s \ln 2 - 1}$$

4.
$$\frac{\ln 2}{s \ln 2 - 1}$$

[Option ID = 29421]

Correct Answer :-

$$\frac{1}{s - \ln 2}$$

[Option ID = 29419]

49) Consider a collection of non-interacting particles, each of mass m in a volume where the gravitational force is a -ve (z-direction). Consider the system is in thermal equilibrium at a temperature T. Find the partition function

[Question ID = 7357]

1.
$$Q_N = \left[\frac{(kT)^3}{2\pi mg\hbar^2} \right]^{N/2}$$

[Option ID = 29422]

²·
$$Q_N = \left[\frac{2\pi mg\hbar^2}{(kT)^3}\right]^{N/2}$$

$$Q_N = \left[\frac{(kT)^3}{2\pi mg\hbar^2} \right]^N$$

[Option ID = 29424]

$$^{4}Q_{N} = \frac{\left[2\pi mg\hbar^{2}\right]^{N}}{(kT)^{3}}$$

[Option ID = 29425]

www.FirstRanker.com

[Option ID = 29422]

50) The quantum distribution function for any gas atom which follows MB, BE and FD statistics is given as a generalized single form

$$f_i = g_i/[exp(\epsilon_i - \mu) / (kT + J)]$$

If the distribution function follows the MB statistics in a classical limit then what will be the condition of the following. Symbols have their usual meanings

www.FirstPanker.com

[Question ID = 7358]

$$\frac{f_i}{g_i} \ll 1 \; ; \; J = 1$$

2.
$$\frac{f_i}{g_i} \ll 1$$
; $J = 0$

3.
$$\frac{g_i}{f_i} \gg 1$$
; $J = 1$

$$4. \frac{g_i}{f_i} \gg 1 \; ; \; J = -1$$

[Option ID = 29429]

Correct Answer :-

•
$$\frac{f_i}{g_i} \ll 1$$
; $J = 0$

[Option ID = 29427]