Topic:- PHY MSC S2

1) An atomic transition line with wavelength 350 nm is observed to be split into three components in a spectrum of light from a sunspot. Adjacent components are separated by 1.7 pm . Determine the strength of the magnetic field in the sunspot
[Question ID = 6662]
1. 3 T [Option ID = 26642]
2. 0.03 T [Option $\mathrm{ID}=26643$]
3. 3.3 T [Option ID = 26644]
4. 0.3 T [Option ID $=26645$]

Correct Answer :-

- 0.3 T [Option ID = 26645]

2) which one of the following is correct in respect of an electron and a proton having a same de-Broglie wavelength of $2 \AA$ [Question ID = 6663]
1. Both have same kinetic energy [Option ID $=26646$]
2. Both have same velocity [Option ID $=26647$]
3. Both have same momentum [Option ID = 26648]
4. The kinetic energy of proton is more than that of electron [Option ID = 26649]

Correct Answer :-

- Both have same momentum [Option ID = 26648]

3) If $r_{p} \& r_{H}$ are the radius and $E_{p} \& E_{H}$ are the energy of an electron in the $n^{t h}$ orbit of positronium atom and hydrogen atom respectively, then
[Question ID = 6664]
1. $r_{p}=2 r_{H}$ and $E_{p}=E_{H} / 2$
[Option ID = 26650]
2. $r_{p}=2 r_{H}$ and $E_{p}=2 E_{H}$
[Option ID = 26651]
3. $r_{p}=2 r_{H}$ and $E_{p}=E_{H} / 4$
[Option ID = 26652]
4. $r_{p}=r_{H}$ and $E_{p}=2 E_{H}$
[Option ID = 26653]

Correct Answer :-

- $r_{p}=2 r_{H}$ and $E_{p}=E_{H} / 2$
[Option ID = 26650]

4) An X-ray beam of wavelength 0.16 nm is incident on a set of planes of a certain crystal. The first Bragg reflection is observed for an incidence angle of 30°. What is the corresponding inter planar spacing?
[Question ID = 6669]
1. 0.16 nm [Option ID $=26670$]
2. 0.67 nm [Option $\mathrm{ID}=26671]$
3. 1.02 nm [Option ID $=26672$]
4. 0.89 nm [Option $\mathrm{ID}=26673$]

Correct Answer :-

- 0.16 nm [Option ID $=26670$]

5) What is the velocity of conduction electron of silver having Fermi energy 5.52 eV
[Question ID = 6670]
1. $1.39 \times 10^{6} \mathrm{~m} / \mathrm{s}$ [Option $\mathrm{ID}=26674$]
2. $2.39 \times 10^{6} \mathrm{~m} / \mathrm{s}$ [Option $\mathrm{ID}=26675$]
3. $0.89 \times 10^{6} \mathrm{~m} / \mathrm{s}$ [Option ID $=26676$]
4. 0 [Option ID $=26677$]

Correct Answer :-

- $1.39 \times 10^{6} \mathrm{~m} / \mathrm{s}$ [Option ID $=26674$]
 of silicon at room temperature. Given that the intrinsic electron concentration of silicon at room temperature is 1.6×10^{16} m^{-3}
www.FirstRanker.com

Correct Answer :-

- $3.2 \times 10^{10} \mathrm{~m}^{-3}$ [Option ID $=26678$]

7) The dispersion relation for a one-dimensional monoatomic lattice chain is given by the equation, $\omega=\frac{2}{a} v_{s}\left|\sin \left(\frac{K a}{2}\right)\right|$, where, ' a ' is the interatomic spacing, $K=\frac{2 \pi}{\lambda}$ and v_{s} has the dimension of velocity. The relation between the phase velocity V_{P} and group velocity V_{g} in the long wavelength limit is given by
[Question ID = 6674]
1. $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{g}}$
[Option ID = 26690]
2. $\mathrm{V}_{\mathrm{P}}=2 \mathrm{~V}_{\mathrm{g}}$
[Option ID = 26691]
3. $V_{P}=V_{g} / 2$
[Option ID = 26692]
4. $V_{p} \neq V_{g}$
[Option ID = 26693]
Correct Answer :-

- $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{g}}$
[Option ID = 26690]

8) The largest wavelength of light falling on double slits separated by $1.5 \mu \mathrm{~m}$, for which there is a first order maximum is in the,
[Question ID = 6676]
1. ultraviolet range [Option ID $=26698$]
2. visible range [Option ID $=26699$]
3. infrared range [Option ID $=26700$]
4. X-ray range [Option ID = 26701]

Correct Answer :-

- infrared range [Option ID = 26700]

9) In a multi-stage R-C coupled amplifier, the coupling capacitor
[Question ID = 6680]
1. limits the low frequency response [Option ID $=26714$]
2. limits the high frequency response [Option ID $=26715$]
3. reduces the amplitude of input signal [Option ID $=26716$]
4. blocks d.c. component without affecting the frequency response [Option ID = 26717]

Correct Answer :-

- blocks d.c. component without affecting the frequency response [Option ID = 26717]

10) An AM transmitter is coupled to an aerial. The input current is found to be 5 A . With modulation the current value increases to 5.9 A . The depth of modulation is
[Question ID = 6681]
1. 83.4% [Option ID $=26718$]
2. 88.6% [Option ID $=26719$]
3. 78.2% [Option ID $=26720$]
4. 74.3% [Option ID $=26721$]

Correct Answer :-

- 88.6\% [Option ID = 26719]

11) Hexadecimal equivalent of a digital number 10011101 is
[Question ID = 6683]
1. H913 [Option ID = 26726]
2. 9D [Option ID = 26727]
3. $A E$ [Option $I D=26728$]
4. 157 [Option ID $=26729$]

Correct Answer :-

- 9D [Option ID = 26727]

Correct Answer :-

- Decreases [Option ID = 26730]

13) Which one of the following is an example of doubly magic nuclei
[Question ID = 6685]
1. ${ }^{18} 0$
[Option ID = 26734]
2. ${ }^{48} \mathrm{Ca}$
[Option ID = 26735]
3. ${ }^{124} \mathrm{Sn}$
[Option ID = 26736]
4. ${ }^{204} \mathrm{~Pb}$
[Option ID = 26737]

Correct Answer :-

- ${ }^{48} \mathrm{Ca}$
[Option ID = 26735]

14) Which radiation has maximum ionization power?
[Question ID = 6686]
1. Alpha [Option ID $=26738$]
2. Beta [Option ID $=26739$]
3. Neutron [Option ID $=26740$]
4. Gamma [Option ID $=26741$]

Correct Answer :-

- Alpha [Option ID = 26738]

15) For beta-minus decay, which statement is TRUE?
[Question ID = 6688]
1. Daughter nuclide atomic mass $\left(A_{D}\right)$ is more than that of the parent nuclide atomic mass $\left(A_{p}\right)$ [Option ID $=26746$]
2. Daughter nuclide atomic number $\left(Z_{D}\right)$ is same that of the parent nuclide atomic number $\left(Z_{p}\right)$ [Option $I D=26747$]
3. Daughter nuclide neutron number $\left(N_{D}\right)$ is less than that of the parent nuclide neutron number $\left(N_{p}\right)$ [Option ID = 26748]
4. Daughter nuclide neutron number $\left(N_{D}\right)$ is same that of the parent nuclide neutron number $\left(N_{p}\right)$ [Option ID = 26749]

Correct Answer :-

- Daughter nuclide neutron number $\left(N_{D}\right)$ is less than that of the parent nuclide neutron number $\left(N_{p}\right)$ [Option ID = 26748]

16) The probability that student A solves the problem is $1 / 2$, and that of B is $2 / 3$. What is the probability that the problem is solved?
[Question ID = 6689]
1. $4 / 6$
[Option ID $=26750$]
2. $1 / 3$
[Option ID = 26751]
3. $5 / 6$
[Option ID = 26752]
4. none of these
[Option ID = 26753]
Correct Answer :-

- $5 / 6$
[Option ID = 26752]

17) Are the three points whose position vectors are $2 \mathbf{i}+3 \mathrm{j}-4 \mathrm{k}, \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$ and $-7 \mathrm{j}+10 \mathrm{k}$ collinear?
[Question ID = 6690]

1. Yes

[Option ID = 26757]
Correct Answer :-

- Yes
[Option ID = 26754]

18) The number of independent fundamental solutions in n-th order ordinary differential equation is
[Question ID = 6692]
1. $\mathrm{n}-1$ [Option $\mathrm{ID}=26762$]
2. n [Option ID $=26763$]
3. $\mathrm{n}+1$ [Option ID = 26764]
4. $2 n$ [Option ID $=26765$]

Correct Answer :-

- n [Option ID = 26763]

19) If $z_{1}=2-3 i$ and $z_{2}=4+6 i$ then find $\frac{z_{1}}{z_{2}}$
[Question ID = 6693]
1. $-5 / 26-6 \mathrm{i} / 13$
[Option ID = 26766]
2. $-5 / 26+6 i / 13$
[Option ID = 26767]
3. $8+18 \mathrm{i}$
[Option ID = 26768]
4. $8-18 \mathrm{i}$
[Option ID = 26769]

Correct Answer :-

- $-5 / 26-6 \mathrm{i} / 13$
[Option ID = 26766]

20)

The rank of the following matrix $\left(\begin{array}{lll}1 & 5 & 1 \\ 2 & 1 & 1 \\ 3 & 6 & 2\end{array}\right)$ is
[Question ID = 6699]

1. 1
[Option ID = 26790]
2. 2
[Option ID = 26791]
3. 3
[Option ID = 26792]
4. 4
[Option ID $=26793$]
Correct Answer :-

- 2
[Option ID = 26791]

21) Two Carnot engines X and Y are operating in series. The engine X receives heat at 1200 K and rejects to a reservoir at a temperature T. The second engine Y receives the heat rejected by X and in turn rejects to a heat reservoir at 300 K .
Calculate the temperature T (in Kelvin) for the situation when the efficiency of the engines is same
[Question ID = 6704]
1. 600 K [Option ID $=26810$]
2. $750 \mathrm{~K}[$ Option $\mathrm{ID}=26811]$
3. 0 [Option ID = 26812]
4. 450 K [Option ID = 26813]
[Option ID = 29314]
5. $v=\frac{2 m g R}{B^{2} l^{2}}$
[Option ID = 29315]
6. $v=\frac{m g R}{2 B^{2} l^{2}}$
[Option ID = 29316]
7. None of these
[Option ID = 29317]
Correct Answer :-

- $v=\frac{m g R}{(B l)^{2}}$
[Option ID = 29314]

23) An ideal inductor, a resistor of resistance R Ohms and a capacitor with adjustable capacitance are connected in series to an alternating voltage with an effective value of V Volts and with frequency of $f \mathrm{~Hz}$. The current flowing through the circuit when the capacitance of the capacitor is set to C_{1} is the same as when the capacitance of the capacitor is set to C_{2}, $C_{2}>C_{1}$. The inductance of the inductor L is given by
[Question ID = 7331]
1. $\frac{1}{8 \pi^{2} f^{2}} \frac{C_{1}+C_{2}}{C_{1} C_{2}}$
[Option ID = 29318]
2. $\frac{1}{8 \pi^{2} f^{2}} \frac{C_{1} C_{2}}{C_{1}+C_{2}}$
[Option ID = 29319]
3. $\frac{1}{2 \pi f} \frac{C_{1} C_{2}}{C_{1}-C_{2}}$
[Option ID = 29320]
4. $\frac{1}{2 \pi^{2} f^{2} R\left(C_{1}-C_{2}\right)} \frac{C_{1} C_{2}}{C_{1}+C_{2}}$
[Option ID = 29321]

Correct Answer :-

- $\frac{1}{8 \pi^{2} f^{2}} \frac{C_{1}+C_{2}}{C_{1} C_{2}}$
[Option ID = 29318]

24) A cylinder of length L is made up of an inner core of steel of radius r_{1} and an outer sheath of copper of thickness r_{1}. The resistivities of steel and copper are ρ_{1} and ρ_{2} respectively. The total resistance of the cylinder is
[Question ID = 7332]
1. $\frac{\left(\rho_{1} \rho_{2}\right) L}{\pi r_{1}^{2}\left(3 \rho_{1}+\rho_{2}\right)}$
[Option ID $=29322$]
2. $\frac{\left(3 \rho_{1}+\rho_{2}\right) L}{\pi r_{1}^{2}}$
[Option ID = 29323]
3. $\frac{\left(\rho_{1}+\rho_{2}\right) L}{4 \pi r_{1}^{2}}$

- $\frac{\left(\rho_{1} \rho_{2}\right) L}{\pi r_{1}^{2}\left(3 \rho_{1}+\rho_{2}\right)}$
[Option ID = 29322]

25) A meter stick is at an angle of 45° to the x^{\prime} axis in its rest frame. The rod moves with a speed of $\frac{1}{\sqrt{2}} c$ along the $+x$ direction w.r.t. a frame S. The length of the rod in S is
[Question ID = 7333]
1. $\frac{\sqrt{3}}{2}$ meters
[Option ID = 29326]
2. $\frac{\sqrt{5}}{3}$ meters
[Option ID = 29327]
3. $\frac{\sqrt{2}}{3}$ meters
[Option ID = 29328]
4. $\frac{2}{3}$ meters
[Option ID = 29329]
Correct Answer :-

- $\frac{\sqrt{3}}{2}$ meters
[Option ID = 29326]

26) An AC generator with output and frequency f is connected to the plates of an air filled parallel plate capacitor of plate area A and plate separation d. The maximum value of the displacement current is
[Question ID = 7334]
1. $\frac{2 \pi \in_{0} f V A}{d}$
[Option ID = 29330]
2. $\frac{\in f V}{d}$
[Option ID = 29331]
3. $\frac{2 \pi f \varepsilon_{0} A}{V d}$
[Option ID = 29332]
4. Cannot be determined from the information provided
[Option ID = 29333]
Correct Answer :-

- $\frac{2 \pi \in_{0} f V A}{d}$
[Option ID = 29330]

27) An electron enters a uniform magnetic field of flux density $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$. Find the energy difference in (eV), between electrons having spins parallel and anti-parallel to the field. (Given: $\mu_{B}=9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}$)
[Question ID = 7335]
1. $3.95 \times 10^{-3} \mathrm{eV}$

Correct Answer :-

- $13.95 \times 10^{-5} \mathrm{eV}$
[Option ID = 29335]

28) Using the vector atom model, determine the possible values of the angular momentum of an electron in f - shell
[Question ID = 7336]
1. $\frac{3 \sqrt{ } 7}{2} \hbar, \frac{\sqrt{ } 35}{2} \hbar$
[Option ID = 29338]
2. $\frac{2 \sqrt{ } 7}{2} \hbar, \frac{\sqrt{ } 25}{2} \hbar$
[Option ID = 29339]
3. $\frac{5 \sqrt{7}}{2} \hbar, \frac{\sqrt{ } 15}{2} \hbar$
[Option ID = 29340]
4. $\frac{\sqrt{7}}{2} \hbar, \frac{\sqrt{ } 5}{2} \hbar$
[Option ID = 29341]
Correct Answer :-

- $\frac{3 \sqrt{ } 7}{2} \hbar, \frac{\sqrt{ } 35}{2} \hbar$
[Option ID = 29338]

29) The two eigenvalues of the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ are
[Question ID = 7337]
1. 2,0
[Option ID = 29342]
2. 1,1
[Option ID = 29343]
3. 1,2
[Option ID = 29344]
4. 0,1
[Option ID = 29345]
Correct Answer :-

- 2,0
[Option ID = 29342]

30) The commutator, $\pi\left[x^{2}, p_{x}\right]$, is equal to
[Question ID = 7338]
1. ihx
[Option ID = 29346]
2. $2 i h x$
[Option ID $=29347]$
3. $2 i h p_{x}$
[Option ID = 29348]
4. Zero
[Option ID = 29349]
Correct Answer :-

- ihx
[Option ID = 29346]

31) A particle of mass m is confined in the ground state of a one dimensional box extending

FHStR2anker.colmt the energy eigenvalue corresponding to
[Question ID = 7339]

1. $\frac{\hbar^{2} \pi^{2}}{32 m L^{2}}$
[Option ID = 29350]
2. $\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$
[Option ID = 29351]
3. $\frac{\hbar^{2} \pi^{2}}{4 m L^{2}}$
[Option ID $=29352]$
4. $\frac{\hbar^{2} \pi^{2}}{16 m L^{2}}$
[Option ID = 29353]
Correct Answer :-

- $\frac{\hbar^{2} \pi^{2}}{32 m L^{2}}$
[Option ID = 29350]

32) The normalized wave functions ψ_{1} and ψ_{2}, correspond to the ground state and the first excited states of a particle in a potential. The operator \hat{A} acts on the wave functions as
$\hat{A} \psi_{1}=\psi_{2}$ and $\hat{A} \psi_{2}=\psi_{1}$. The expectation value of the operator \hat{A} for the state $\psi=\left(3 \psi_{1}+4 \psi_{2}\right) / 5$ is
[Question ID = 7340]
1. 0.96 [Option ID $=29354$]
2. $-0.32[$ Option ID $=29355]$
3. 0 [Option ID $=29356$]
4. 0.75 [Option ID $=29357]$

Correct Answer :-

- 0.96 [Option ID = 29354]

33) The primitive translation vector of a two-dimensional lattice are $\boldsymbol{a}=2 \hat{\imath}+\hat{\jmath}, \boldsymbol{b}=2 \hat{\jmath}$. The primitive translation vector of its reciprocal lattice in x-direction is given by
[Question ID = 7341]
1. $a^{*}=\pi \hat{\imath}$
[Option ID = 29358]
2. $a^{*}=2 \pi \hat{\imath}$
[Option ID = 29359]
3. $a^{*}=\hat{\imath}$
[Option ID = 29360]
4. $a^{*}=\pi \hat{\jmath}$
[Option ID = 29361]
Correct Answer :-

- $a^{*}=\pi \hat{\imath}$
[Option ID = 29358]

34) The mean drift speed v_{d} of an electron in an applied electric field E with electron density ' n ' can be expressed as
[Question ID = 7342]
$v_{d}=|\sigma E / n e|$
[Option ID $=29362$]
2. $v_{d}=|\sigma E / e|$
3. none of these
[Option ID = 29365]
Correct Answer :-

- $v_{d}=|\sigma E / n e|$
[Option ID = 29362]

35) An un-damped oscillator has time period $\tau_{0}=1.0 \mathrm{sec}$. Now a little damping is added so that its time period changes to $\tau_{1}=1.001 \mathrm{sec}$. By what factor will the amplitude of oscillation decrease after 10 cycles?

[Question ID = 7343]

1. ≈ 17
[Option ID = 29366]
2. ≈ 1
[Option ID = 29367]
3. $\approx 1 / 17$
[Option ID = 29368]
4. None of these
[Option ID = 29369]
Correct Answer :-

- ≈ 17
[Option ID = 29366]

36) A kilogram of water has a constant heat capacity of $4.2 \mathrm{~kJ} / \mathrm{K} / \mathrm{kg}$ over the temperature range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The water was initially at $0^{\circ} \mathrm{C}$ and is brought into contact with a heat reservoir at $100^{\circ} \mathrm{C}$. When the water is in thermal equilibrium with the heat reservoir calculate the change in entropy of the universe (Water + Reservoir).
[Question ID = 7344]
1. $184.8 \mathrm{~J} / \mathrm{K}$
[Option ID = 29370]
2. $2437.8^{\mathrm{J} / \mathrm{K}}$
[Option ID = 29371]
3. $0^{\mathrm{J} / \mathrm{K}}$
[Option ID = 29372]
4. $1310.8 \mathrm{~J} / \mathrm{K}$
[Option ID = 29373]
Correct Answer :-

- $184.8 \mathrm{~J} / \mathrm{K}$
[Option ID = 29370]

37) Two identical finite bodies of constant volume and of constant heat capacity at constant volume C_{v}, are used to drive a heat engine. Their initial temperatures are T_{1} and T_{2}. The maximum amount of work which can be obtained from the system is
[Question ID = 7345]
1. $C_{v}\left\{2\left(T_{1} T_{2}\right)^{1 / 2}-\left(T_{1}+T_{2}\right)\right\}$
[Option ID = 29374]
2. $C_{v}\left(T_{1}+T_{2}\right)$
[Option ID $=29375$]
3. $C_{v}\left(T_{1} T_{2}\right)^{1 / 2}$
38) For a system of bosons, we can write the Bose-Einstein distribution function as $f\left(E_{i}\right)=\frac{1}{\exp \left(\alpha+\beta E_{i}\right)-1}$, Where, $\beta=1 / k_{B} T$ and $\alpha=\mu / k_{B} T \quad\left(\mathbf{k}_{\mathrm{B}}=\right.$ Boltzmann constant). If μ represents the chemical potential, then which one of the following is true?
[Question ID = 7346]
1. $\mu \leq 0$
[Option ID = 29378]
2. $\mu \geq 0$
[Option ID = 29379]
3. $\mu \leq 1$
[Option ID = 29380]
4. $\mu \geq 1$
[Option ID = 29381]
Correct Answer :-

- $\mu \geq 0$
[Option ID = 29379]

39) An ideal capacitor C is charged to a voltage V_{0} and connected at $t=0$ across an ideal inductor L (The circuit now consists of a capacitor and an inductor only). If the resonant frequency
$\omega_{0}=1 / \sqrt{L C}$
, the voltage across the capacitor at time $\mathrm{t} \boldsymbol{>} 0$ is given by
[Question ID = 7347]
1. $\mathrm{V}_{0}[$ Option ID $=29382]$
2. $\mathrm{V}_{0} \cos \left(\omega_{0} \mathrm{t}\right)[$ Option ID $=29383]$
3. $\mathrm{V}_{0} \sin \left(\omega_{0} \mathrm{t}\right)[$ Option ID $=29384]$
4. $V_{o} e^{-\omega_{0} t} \cos \left(\omega_{\mathrm{o}} \mathrm{t}\right)$
[Option ID = 29385]
Correct Answer :-

- $\mathrm{V}_{0} \cos \left(\omega_{0} \mathrm{t}\right)$ [Option ID = 29383]

40) Magnetic moment of proton $\left(\mu_{p}\right)$ in terms of nuclear magneton $\left(\mu_{N}\right)$ is
[Question ID = 7348]
1. $\mu_{p}=1.9 \mu_{N}$
[Option ID = 29386]
2. $\mu_{p}=2.7 \mu_{N}$
[Option ID = 29387]
3. $\mu_{p}=3.8 \mu_{N}$
[Option ID = 29388]
4. $\mu_{p}=5.4 \mu_{N}$
[Option ID = 29389]
Correct Answer :-

- $\mu_{p}=2.7 \mu_{N}$
[Option ID = 29387]

41) Find the eigenvalues of $A+4 I$ where I is identity matrix and $A=\left(\begin{array}{lr}2 & -1 \\ -1 & 2\end{array}\right)$

Qurestionl|-7349]

1. 1,3
[Option ID = 29390]
2. None of these
[Option ID = 29393]
Correct Answer :-

- 5,7
[Option ID = 29391]

42) The limit $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{\frac{1}{n}}$ is
[Question ID = 7350]
1. $\frac{1}{e}$
[Option ID = 29394]
2. 1
[Option ID = 29395]
3. 0
[Option ID = 29396]
4. e
[Option ID = 29397]

Correct Answer :-

- 1
[Option ID = 29395]

43) $\left(\frac{1+i}{\sqrt{2}}\right)^{49}$
is equal to
[Question ID = 7351]
1. $\left(\frac{1+i}{\sqrt{2}}\right)$
[Option ID = 29398]
2. $\left(\frac{2+98 i}{\sqrt{2^{49}}}\right)$
[Option ID = 29399]
3. $\left(\frac{1-i}{\sqrt{2}}\right)$
[Option ID $=29400$]
4. $\left(\frac{2-98 i}{\sqrt{2^{49}}}\right)$
[Option ID = 29401]
Correct Answer :-

- $\left(\frac{1+i}{\sqrt{2}}\right)$
[Option ID = 29398]

44) $\sin \left(\frac{\pi}{4}+i\right)$ is equal to
[Question ID = 7352]
1. $\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right)+\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right) i$
[Option ID = 29402]
2. $\frac{\sqrt{2}}{4}\left(e+\frac{1}{e}\right)+\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right) i$
[Option ID = 29404]
3. $\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right)+\frac{\sqrt{2}}{4}\left(e+\frac{1}{e}\right) i$
[Option ID = 29405]
Correct Answer :-

- $\frac{\sqrt{2}}{4}\left(e+\frac{1}{e}\right)+\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right) i$
[Option ID = 29403]

45) Two students are working on a math problem. The first student has probability $1 / 2$ of solving it and the second student has probability $3 / 4$ of solving it. What is the probability that at least one of them solves the problem?
[Question ID = 7353]
. $\frac{3}{8}$
[Option ID $=29406$]
2.

$\frac{5}{8}$
[Option ID = 29407]
3. $\frac{7}{8}$
[Option ID $=29408$]
$\frac{9}{8}$
4. $\frac{-}{8}$
[Option ID = 29409]

Correct Answer :-

- $\frac{7}{8}$
[Option ID = 29408]

46) Expansion of the function $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region defined by $|z|>2$ is
[Question ID = 7354]
1. $z^{-2}+3 z^{-4}+7 z^{-6}+\ldots$.
[Option ID = 29410]
2. $z^{-2}+3 z^{-3}+7 z^{-4}+\ldots$.
[Option ID = 29411]
3. $z^{-1}+3 z^{-2}+7 z^{-3}+\ldots$.
[Option ID = 29412]
4. $z^{-3}+3 z^{-4}+7 z^{-5}+\ldots$.
[Option ID = 29413]

Correct Answer :-

- $z^{-2}+3 z^{-3}+7 z^{-4}+\ldots$.
[Option ID = 29411]

47) The Fourier transformation of the function $f(x)=1$ for $|x|<a$
$=0$ for $|x|>a$
is
[Question ID = 7355]
www.FirstRanker.com
[Option ID = 29415]
3. $\sqrt{\frac{\pi}{2}} \frac{\sin s a}{s}$
[Option ID = 29416]
4. $\sqrt{\frac{\pi}{2}} \frac{\cos s a}{s}$
[Option ID = 29417]
Correct Answer :-

- $\sqrt{\frac{2}{\pi}} \frac{\sin s a}{s}$
[Option ID = 29414]

48) The Laplace transformation of the function $f(t)=2^{t}$ is
[Question ID = 7356]
1. $\frac{\ln 2}{s-\ln 2}$
[Option ID = 29418]
2. $\frac{1}{s-\ln 2}$
[Option ID = 29419]
3. $\frac{1}{s \ln 2-1}$
[Option ID = 29420]
4. $\ln 2$
$s \ln 2-1$
[Option ID = 29421]
Correct Answer :-

- $\frac{1}{s-\ln 2}$
[Option ID = 29419]

49) Consider a collection of non-interacting particles, each of mass m in a volume where the gravitational force is a -ve (z direction). Consider the system is in thermal equilibrium at a temperature T. Find the partition function
[Question ID = 7357]
1. $Q_{N}=\left[\frac{(k T)^{3}}{2 \pi m g \hbar^{2}}\right]^{\mathrm{N} / 2}$
[Option ID = 29422]
2. $Q_{N}=\left[\frac{2 \pi m g \hbar^{2}}{(k T)^{3}}\right]^{\mathrm{N} / 2}$
[Option ID = 29423]
3. $Q_{N}=\left[\frac{(k T)^{3}}{2 \pi m g \hbar^{2}}\right]^{\mathrm{N}}$
[Option ID = 29424]
4. $Q_{N}=\left[\begin{array}{c}2 \pi m g \hbar^{2} \\ (k T)^{3}\end{array}\right]^{\mathrm{N}}$
[Option ID = 29425]
[Option ID = 29422]
50) The quantum distribution function for any gas atom which follows $M B, B E$ and $F D$ statistics is given as a generalized single form
$f_{i}=g_{i} /\left[\exp \left(\epsilon_{i}-\mu\right) /(k T+\mathrm{J})\right]$
If the distribution function follows the MB statistics in a classical limit then what will be the condition of the following. Symbols have their usual meanings
[Question ID = 7358]
1. $\frac{f_{i}}{g_{i}} \ll 1 ; \mathrm{J}=1$
[Option ID = 29426]
2. $\frac{f_{i}}{g_{i}} \ll 1 ; \mathrm{J}=0$
[Option ID = 29427]
3. $\frac{g_{i}}{f_{i}} \gg 1 ; \mathrm{J}=1$
[Option ID = 29428]
4. $\frac{g_{i}}{f_{i}} \gg 1 ; \mathrm{J}=-1$
[Option ID $=29429$]
Correct Answer :-

- $\frac{f_{i}}{g_{i}} \ll 1 ; \mathrm{J}=0$
[Option ID = 29427]

