stkanker.com

irstranker's choice DU MSC Physicsww.FirstRanker.com

www.FirstRanker.com

Topic:- PHY MSC S2

1) An atomic transition line with wavelength 350 nm is observed to be split into three components in a spectrum of light from a sunspot. Adjacent components are separated by 1.7 pm. Determine the strength of the magnetic field in the sunspot [Question ID = 6662] 1. 3 T [Option ID = 26642] 2. 0.03 T [Option ID = 26643] 3. 3.3 T [Option ID = 26644] 4. 0.3 T [Option ID = 26645] Correct Answer :-• 0.3 T [Option ID = 26645] 2) which one of the following is correct in respect of an electron and a proton having a same de-Broglie wavelength of 2 Å [Question ID = 6663] 1. Both have same kinetic energy [Option ID = 26646] 2. Both have same velocity [Option ID = 26647] 3. Both have same momentum [Option ID = 26648] 4. The kinetic energy of proton is more than that of electron [Option ID = 26649] Correct Answer :-• Both have same momentum [Option ID = 26648] 3) If $r_p \& r_H$ are the radius and $E_p \& E_H$ are the energy of an electron in the n^{th} orbit of positronium atom and hydrogen atom respectively, then [Question ID = 6664] 1. $r_p = 2 r_H and E_p = E_H/2$ [Option ID = 26650] 2. $r_p = 2 r_H and E_p = 2 E_H$ [Option ID = 26651] 3. $r_p = 2 r_H and E_p = E_H/4$ [Option ID = 26652] 4. $r_p = r_H$ and $E_p = 2 E_H$ [Option ID = 26653] Correct Answer :-• $r_p = 2 r_H and E_p = E_H/2$ [Option ID = 26650] 4) An X-ray beam of wavelength 0.16 nm is incident on a set of planes of a certain crystal. The first Bragg reflection is observed for an incidence angle of 30°. What is the corresponding inter planar spacing? [Question ID = 6669] 1. 0.16 nm [Option ID = 26670] 2. 0.67 nm [Option ID = 26671] 3. 1.02 nm [Option ID = 26672] 4. 0.89 nm [Option ID = 26673] Correct Answer :-• 0.16 nm [Option ID = 26670] 5) What is the velocity of conduction electron of silver having Fermi energy 5.52 eV [Question ID = 6670] 1. 1.39 × 10⁶ m/s [Option ID = 26674] 2. 2.39 x 10⁶ m/s [Option ID = 26675] 3. 0.89 × 10⁶ m/s [Option ID = 26676] 4. 0 [Option ID = 26677] Correct Answer :-• 1.39 × 10⁶ m/s [Option ID = 26674]

6) Given that a piece of n-type silicon contains $^{8}_{WW}$ $^{10}_{First}$ $^{3}_{Ranker.Com}$ impurity atoms, calculate the carrier concentration of silicon at room temperature. Given that the intrinsic electron concentration of silicon at room temperature is 1.6×10^{16} m⁻³

3. 1.5 x 10 ¹⁰ m ⁻³ [Option ID = 26680] 4. 3.2 x 10 ¹¹ m ⁻³ [Option ID = 26681]	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :-		
• 3.2 x 10 ¹⁰ m ⁻³ [Option ID = 26678]		
7) The dispersion relation for a one-dime	nsional monoatomic lattice chain is given	by the equation, $\omega = \frac{2}{a} v_s \sin(\frac{Ka}{2}) $
where, 'a' is the interatomic spacing, K	$=$ $\frac{1}{\lambda}$ and v_s has the dimension of velocity	y. The relation between the phase
velocity V_{P} and group velocity V_{g} in the lo	ng wavelength limit is given by	
[Question ID = 6674]		
1. $V_P = V_g$		
[Option ID = 26690]		
$V_{p} = 2V_{g}$		
$V_{\rm P} = V_{\rm g}/2$		
[Option ID = 26692]		
4. $V_p \neq V_g$		
[Option ID = 26693]		
Correct Answer :-		
• V _P = V _g		
[Option ID = 26690]		
[Question ID = 6676] 1. ultraviolet range [Option ID = 26698] 2. visible range [Option ID = 26699] 3. infrared range [Option ID = 26700] 4. X-ray range [Option ID = 26701]		
Correct Answer :-		
• infrared range [Option ID = 26700]		
9) In a multi stage P.C. coupled amplifier	the coupling conscitor	
[Question ID = 6680]		
1. limits the low frequency response [Option ID = 2	.6714]	
 limits the high frequency response [Option ID = reduces the amplitude of input signal [Option ID 	26715]) = 26716]	
 blocks d.c. component without affecting the free 	quency response [Option ID = 26717]	
Correct Answer :-		
blocks d.c. component without affecting the free	quency response [Option ID = 26717]	
10) An AM transmitter is coupled to an ac	erial. The input current is found to be 5	A. With modulation the current value
increases to 5.9 A. The depth of modulati	on is	
[Question ID = 6681]		
1. οs.4% [υρτιση ΙD = 26/18] 2. 88.6% [Option ID = 26719]		
3. 78.2% [Option ID = 26720]		
4. 74.3% [Option ID = 26721]		
Correct Answer :-		
 οο.ο% [Uption ID = 26/19] 		
11) Hexadecimal equivalent of a digital n	number 10011101 is	
[Question ID = 6683]		
1. H913 [Option ID = 26726]		
2. 90 [Option ID = 26727] 3. AE [Option ID = 26728]		
4. 157 [Option ID = 26729]		
Correct Answer :-	· · · · · · · · · · · · · · · · · · ·	······

[Question ID = 6684]

4. Decomes broader [Option iD = 20755]	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :-		
• Decreases [Option ID = $26/30$]		
13) Which one of the following is an exam	nple of doubly magic nuclei	
[Question ID = 6685] 1. ¹⁸ <i>O</i>		
[Option ID = 26734] 2. ⁴⁸ Ca		
[Option ID = 26735] 3. ¹²⁴ Sn		
[Option ID = 26736] 4. ²⁰⁴ <i>Pb</i>		
[Option ID = 26737]		
Correct Answer :- • ⁴⁸ Ca		
[Option ID = 26735]		
14) Which radiation has maximum ionization	ion power?	
[Question ID = 6686] 1. Alpha [Option ID = 26738]		
2. Beta [Option ID = 26739]		
з. Neutron [Uption ID = 26740] 4. Gamma [Option ID = 26741]		
Correct Answer :-		
• Alpha [Option ID = 26738]		
 For beta-minus decay, which statemet [Question ID = 6688] Daughter nuclide atomic mass (A_D) is more than Daughter nuclide atomic number (Z_D) is same that Daughter nuclide neutron number (N_D) is less that Daughter nuclide neutron number (N_D) is same that 	that of the parent nuclide atomic mass (A_p) [O] at of the parent nuclide atomic number (Z_p) [Opti n that of the parent nuclide neutron number (N_p) hat of the parent nuclide neutron number (N_p) [Op	ption ID = 26746] ion ID = 26747] [Option ID = 26748] tion ID = 26749]
Correct Answer :- • Daughter nuclide neutron number (N _D) is less that	n that of the parent nuclide neutron number (N_p)	[Option ID = 26748]
16) The probability that student A solves is solved?	the problem is 1/2, and that of B is 2/3.	What is the probability that the prob
[Question ID = 6689] 1. 4/6		
[Option ID = 26750] 2. 1/3		
[Option ID = 26751] 3. 5/6		
[Option ID = 26752] 4. none of these		
[Option ID = 26753]		
Correct Answer :- • 5/6		
[Option ID = 26752]		
17) Are the three points whose position v	rectors are 2i+3j-4k, i-2j+3k and -7j+10k	collinear?
[Question ID = 6690]		

	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 26757]		
Correct Answer :-		
• Yes		
[Option ID = 26754]		
18) The number of independent fundame	ental solutions in n-th order ordinary diffe	rential equation is
[Question ID = 6692]		
2. n [Option ID = 26763]		
3. n+1 [Option ID = 26764]		
4. 2n [Option ID = 26765]		
Correct Answer :-		
• n [Option ID = 26763]		
19) If $z_1 = 2 - 3i$ and $z_2 = 4 + 6i$ then fi	nd $\frac{z_1}{z_2}$	
	-2	
[Question ID = 6693]		
15/26-6i/13		
[Option ID = 26766] 25/26+6i/13		
[Option ID = 26767]		
3. 0+181		
[Uption ID = 26768] 4. 8-18i		
[Option ID = 26769]		
Correct Answer :-		
• -5/26-6i/13		
[Option ID = 26766]		
	E م.	
20) The rank of the following matrix $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{bmatrix} 5 & 1 \\ 1 & 1 \end{bmatrix}$ is	
	6 2	
[Question ID = 6699]		
[Question ID = 6699] 1. 1		
[Question ID = 6699] 1. 1 [Option ID = 26790]		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791]		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792]		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793]		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :-		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791]		
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791] 21) Two Carnot engines X and X are correct	rating in series. The engine Y receives be	bat at 1200 K and rejects to a record
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791] 21) Two Carnot engines X and Y are open a temperature T. The second engine Y r	rating in series. The engine X receives he eceives the heat rejected by X and in tur	eat at 1200 K and rejects to a reservo n rejects to a heat reservoir at 300 K
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791] 21) Two Carnot engines X and Y are open a temperature T. The second engine Y re Calculate the temperature T (in Kelvin) for	rating in series. The engine X receives he eceives the heat rejected by X and in turn or the situation when the efficiency of the	eat at 1200 K and rejects to a reservo n rejects to a heat reservoir at 300 K e engines is same
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791] 21) Two Carnot engines X and Y are open a temperature T. The second engine Y re Calculate the temperature T (in Kelvin) for [Question ID = 6704]	rating in series. The engine X receives he eceives the heat rejected by X and in turn or the situation when the efficiency of the	eat at 1200 K and rejects to a reservo n rejects to a heat reservoir at 300 K e engines is same
<pre>[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- 2 [Option ID = 26791] 21) Two Carnot engines X and Y are open a temperature T. The second engine Y rr Calculate the temperature T (in Kelvin) for [Question ID = 6704] 1. 600 K [Option ID = 26810] 2. 750 K [Option ID = 26811]</pre>	rating in series. The engine X receives he eceives the heat rejected by X and in turn or the situation when the efficiency of the	eat at 1200 K and rejects to a reservo n rejects to a heat reservoir at 300 K e engines is same
[Question ID = 6699] 1. 1 [Option ID = 26790] 2. 2 [Option ID = 26791] 3. 3 [Option ID = 26792] 4. 4 [Option ID = 26793] Correct Answer :- • 2 [Option ID = 26791] 21) Two Carnot engines X and Y are open a temperature T. The second engine Y re Calculate the temperature T (in Kelvin) for [Question ID = 6704] 1. 600 K [Option ID = 26810] 2. 750 K [Option ID = 26811] 3. 0 [Option ID = 26812]	rating in series. The engine X receives he eceives the heat rejected by X and in turn or the situation when the efficiency of the	eat at 1200 K and rejects to a reservo n rejects to a heat reservoir at 300 K e engines is same

22) A square conducting loop of mass m, side I and resistance R is dropped into a region with a uniform horizontal magnetic

Wrose direction is perpendicular t	o the plane of the falling loop. The loop v	vill reach a terminal velocity v given by
[Question ID = 7330] 1. $v = \frac{mgR}{(Bl)^2}$	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 29314] 2. $v = \frac{2mgR}{B^2l^2}$		
[Option ID = 29315] 3. $v = \frac{mgR}{2B^2l^2}$		
[Option ID = 29316] 4. None of these [Option ID = 29317]		
• $v = \frac{mgR}{(Bl)^2}$		
[Option ID = 29314]		

23) An ideal inductor, a resistor of resistance R Ohms and a capacitor with adjustable capacitance are connected in series to an alternating voltage with an effective value of V Volts and with frequency of f Hz. The current flowing through the circuit when the capacitance of the capacitor is set to C_1 is the same as when the capacitance of the capacitor is set to C_2 , $C_2 > C_1$. The inductance of the inductor L is given by

[Question ID = 7331] 1. $\frac{1}{8\pi^2 f^2} \frac{C_1 + C_2}{C_1 C_2}$ 2. $\frac{1}{8\pi^2 f^2} \frac{C_1 C_2}{C_1 + C_2}$ 3. $\frac{1}{2\pi f} \frac{C_1 C_2}{C_1 - C_2}$ [Option ID = 29320] 4. $\frac{1}{2\pi^2 f^2 R(C_1 - C_2)} \frac{C_1 C_2}{C_1 + C_2}$ [Option ID = 29321] Correct Answer :-• $\frac{1}{8\pi^2 f^2} \frac{C_1 + C_2}{C_1 C_2}$ [Option ID = 29318] 24) A cylinder of length L is made up of an inner core of steel of radius r_1 and an outer sheath of copper of thickness r_1 . The resistivities of steel and copper are ρ_1 and ρ_2 respectively. The total resistance of the cylinder is [Question ID = 7332] 1. $\frac{(\rho_1 \rho_2)L}{\pi r_1^2 (3\rho_1 + \rho_2)}$ [Option ID = 29322] 2. $\frac{(3\rho_1 + \rho_2)L}{\pi r_1^2}$

www.FirstRanker.com

[Option ID = 29324] 4. Cannot be determined from the information provided above

 $\frac{[\text{Option ID} = 29323]}{3. \frac{(\rho_1 + \rho_2)L}{4\pi r_1^2}}$

[Question ID = 7335]

1. 3.95 x 10⁻⁵ eV

on Hip 2283351 Ranker.com

www.FirstRanker.com

[Option ID = 2937] Correct Answer :- • the [Option ID = 2935] 28) Using the vector atom model, determine the possible values of the angular momentum of an electron in <i>f</i> - shell [Question ID = 7336] 1. $\frac{57}{2}$ h. $\frac{57}{2}$ h. [Option ID = 2938] 2. $\frac{57}{2}$ h. $\frac{57}{2}$ h. [Option ID = 2938] 3. $\frac{57}{2}$ h. $\frac{57}{2}$ h. [Option ID = 2938] 29) The two eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ ore [Question ID = 7337] 1. 23 [Option ID = 73340] 2. 13 [Option ID = 29346] 2. 13 [Option ID = 29346] 2. 13 [Option ID = 29346] 2. 13 [Option ID = 29346] 2. 27 [Option ID = 29346] 3. 27 [Opt	4. 33.95 x 10 ⁻⁵ eV	www.FirStRanker.com	www.FirstRanker.com
Correct Answer :- • 13 55 x 10 5 $\frac{1}{2}$ (Dyton 0 = 2015) 28) Using the vector atom model, determine the possible values of the angular momentum of an electron in <i>f</i> - shell Coexistion 10 = 7336] • $\frac{1}{2}$ k $$	[Option ID = 29337]		
[Option ID = 7336] 28) Using the vector atom model, determine the possible values of the angular momentum of an electron in <i>f</i> - shell [Operation ID = 7336] 1. $\frac{3y^2}{2}$ h. $\frac{45y}{2}$ h. $\frac{45y}{2}$ h. [Option ID = 73370] 2. $\frac{3y^2}{2}$ h. $\frac{45y}{2}$ h. [Option ID = 73340] 4. $\frac{3y}{2}$ h. $\frac{45y}{2}$ h. [Option ID = 73340] 4. $\frac{3y}{2}$ h. $\frac{45y}{2}$ h. [Option ID = 73370] 1. $\frac{3y}{2}$ h. $\frac{45y}{2}$ h. [Option ID = 73373] 1. $\frac{2}{2}$ (Option ID = 73373] 1. $\frac{2}{2}$ (Option ID = 73373] 1. $\frac{2}{2}$ [Option ID = 73340] 4. $\frac{2}{2}$ h. $\frac{4y}{2}$ h. [Option ID = 73340] 4. $\frac{2}{2}$ h. $\frac{4y}{2}$ h. [Option ID = 73343] Correct Answer :- • $\frac{3}{2}$ [Option ID = 73340] (Option ID = 73343] 1. $\frac{2}{2}$ [Option ID = 73343] [Option ID = 73343] [Option ID = 73343] 1. $\frac{1}{10}$ [Option ID = 73340] [Option ID = 73340] [Correct Answer :- • 13.95 x 10 ⁻⁵ eV		
28) Using the vector atom model, determine the possible values of the angular momentum of an electron in <i>f</i> - shell [Question ID = 7336] $1 + \frac{32}{2} h + \frac{32}{2} h$ [Option ID = 29339] $2 + \frac{32}{2} h + \frac{32}{2} h$ [Option ID = 29340] $4 + \frac{32}{2} h + \frac{32}{2} h$ [Option ID = 29340] $4 + \frac{32}{2} h + \frac{32}{2} h$ [Option ID = 29340] (Option ID = 29338] 29) The two eigenvalues of the matrix $(\frac{1}{1} - \frac{1}{1})$ are [Question ID = 7337] 1. 2.0 [Option ID = 7337] 1. 2.0 [Option ID = 73337] 1. 2.0 [Option ID = 29342] 2. 1.1 [Option ID = 29342] 2. 1.2 [Option ID = 29342] 3. 2.2 [Option ID = 29342] 3. 2.2 [Option ID = 29342] 3. 2.2 [Option ID = 29343] 4. Zero [Option ID = 29346] [Option ID = 29346] [Opt	[Option ID = 29335]		
$\begin{bmatrix} \text{Question ID = 7336} \\ 1 & \frac{35}{2} h & \frac{35}{2} h \\ 0 & \frac{35}{2} h & \frac{35}{2} h \\ 0 & \frac{35}{2} h \\ \frac{35}{2} h & \frac{35}{2} h \\ 0 & \frac{35}{2} h \\ $	28) Using the vector atom model, determin	ne the possible values of the angular mo	mentum of an electron in <i>f</i> - shell
$[\begin{array}{c} [0pton D - 29338] \\ 2 & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h \\ [(0pton D - 29339] \\ 3 & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h \\ [(0pton D - 29340] \\ 4 & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h & \frac{1}{2^{2}} h \\ [(0pton D - 29341] \\ \hline \\ $	[Question ID = 7336] 1. $\frac{3\sqrt{7}}{2}$ ħ , $\frac{\sqrt{35}}{2}$ ħ		
$\begin{array}{l} [0ption D = 29349] \\ 2 & \frac{8}{2^{2}} h & \frac{\sqrt{3}}{2} h \\ \frac{\sqrt{3}}{2} h & \frac{\sqrt{3}}{2} h \\ \hline \\ [0ption D = 29341] \\ \hline \\ $	[Option ID = 29338] 2. $\frac{2\sqrt{7}}{2}$ h , $\frac{\sqrt{25}}{2}$ h		
$\begin{array}{l} (\text{option ID} - 29340] \\ 4 \frac{\sqrt{2}}{2} h \frac{\sqrt{2}}{2} h \\ (\text{Dption ID} - 29341] \\ \hline \\ \hline \\ \text{Correct Answer :} \\ \bullet \frac{8}{2} \frac{\sqrt{2}}{n} h \frac{\sqrt{2}}{2} h \\ (\text{Option ID} - 29338) \\ \hline \\ \hline \\ \text{(Dption ID} - 29342] \\ 1 2 & 0 \\ (\text{Option ID} - 29342] \\ 1 1 \\ (\text{Option ID} - 29342] \\ 1 1 \\ (\text{Option ID} - 29342] \\ 1 1 \\ (\text{Option ID} - 29343] \\ 3 1, 2 \\ (\text{Option ID} - 29344] \\ 4 0, 1 \\ (\text{Option ID} - 29345] \\ \hline \\ \hline \\ \text{Correct Answer :} \\ \bullet 2, 2 \\ (\text{Option ID} - 29346] \\ 1 1 & m \\ (\text{Option ID} - 29346] \\ 1 1 & m \\ (\text{Option ID} - 29346] \\ 2 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ \text{(Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29348] \\ 4 2 & 7 m \\ \hline \\ (\text{Option ID} - 29346] \\ \hline \\ $	[Option ID = 29339] 3. $\frac{5\sqrt{7}}{2}$ h , $\frac{\sqrt{15}}{2}$ h		
[Option ID - 29341] Correct Answer :- • $\frac{3\sqrt{7}}{2} \hbar , \frac{\sqrt{32}}{2} \hbar$ [Option ID - 29338] 29) The two eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are [Question ID = 7337] 1. 2.0 [Option ID - 29342] 2. 1,1 [Option ID - 29343] 3. 1,2 [Option ID - 29343] (Option ID - 29344] 4. 0,1 [Option ID - 29345] Correct Answer :- • 2,0 [Option ID - 29345] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>lnx</i> [Option ID = 7338] 1. <i>lnx</i> [Option ID = 29346] 2. 2 <i>lnx</i> [Option ID = 29347] 3. 2 <i>lnpx</i> [Option ID = 29348] 4. Zero [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>lnx</i> [Option ID = 29346] 4. Zero [Option ID = 293	[Option ID = 29340] 4. $\frac{\sqrt{7}}{2}$ h , $\frac{\sqrt{5}}{2}$ h		
Correct Answer :- • $\frac{8t^{2}}{2}$ h , $\frac{45}{2}$ h [Option ID = 29338] 29) The two eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are [Question ID = 7337] 1. 2,0 [Option ID = 29342] 2. 1.1 [Option ID = 29342] 3. 1,2 [Option ID = 29344] 4. 0,1 [Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29345] 30) The commutator, $\pi[x^{2}, p_{x}]$, is equal to [Question ID = 7338] 1. lnx [Option ID = 29346] 2. $2lnx$ [Option ID = 29346] 2. $2lnx$ [Option ID = 29346] 4. Zero [Option ID = 29346] [Option ID = 29346] [Option ID = 29346] [Option ID = 29346] [Option ID = 29346]	[Option ID = 29341]		
[Option ID = 2938] 29) The two eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are [Question ID = 7337] 1. 2.0 [Option ID = 29342] 2. 1.1 [Option ID = 29343] 3. 1.2 [Option ID = 29344] 4. 0.1 [Option ID = 29345] Correct Answer : • 2.0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. $i\hbar x$ [Option ID = 29346] 2. $2i\hbar x$ [Option ID = 29348] 4. Zeron [Option ID = 29	Correct Answer :- • $\frac{3\sqrt{7}}{2}$ h , $\frac{\sqrt{35}}{2}$ h		
29) The two eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are [Question ID = 7337] 1. 2,0 [Option ID = 29342] 2. 1,1 [Option ID = 29343] 3. 1,2 [Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29345] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>ibx</i> [Option ID = 29346] 2. <i>2lbx</i> [Option ID = 29346] 2. <i>2lbx</i> [Option ID = 29346] 2. <i>2lbx</i> [Option ID = 29348] 4. Zero [Option ID = 29346] 4. Zero [[Option ID = 29338]		
[Question ID = 7337] 1. 2,0 [Option ID = 29342] 2. 1,1 [Option ID = 29343] 3. 1,2 [Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- 2.,0 [Option ID = 29345] 30) The commutator, $\pi[\chi^2, p_x]$, is equal to [Question ID = 7338] 1. <i>lbx</i> [Option ID = 29346] 2. <i>zibx</i> [Option ID = 29347] 3. <i>zibpx</i> [Option ID = 29348] 4. <i>Zero</i> [Option ID = 29348] 5. <i>Zero</i> [Option ID = 29348]	29) The two eigenvalues of the matrix $\begin{pmatrix} 1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1 \end{pmatrix}$ are	
[Option ID = 29342] 2. 1,1 [Option ID = 29343] 3. 1,2 [Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>ihx</i> [Option ID = 29346] 2. <i>2lhx</i> [Option ID = 29346] 2. <i>2lhx</i> [Option ID = 29346] 2. <i>2lhx</i> [Option ID = 29348] 4. Zero [Option ID = 29346] 4. Zero [Option ID = 29346] 4. Zero [Option ID = 29346] 4. Zero [Option ID = 29346] 4. Zero [Option ID = 29348] 4. Zero [Opt	[Question ID = 7337] 1. 2,0		
[Option ID = 29343] 3. 1.2 [Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>i</i> hx [Option ID = 7338] 1. <i>i</i> hx [Option ID = 29346] 2. <i>z</i> ihx [Option ID = 29347] 3. <i>z</i> ihp _x [Option ID = 29348] 4. Zero [Option ID = 29348] [Option ID = 29348] [Option ID = 29348]	[Option ID = 29342] 2. 1,1		
[Option ID = 29344] 4. 0,1 [Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>i</i> hx [Option ID = 29346] 2. <i>2i</i> hx [Option ID = 29347] 3. <i>2i</i> hp _x [Option ID = 29348] 4. Zero [Option ID = 29348] 4. Zero [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>i</i> hx [Option ID = 29346] 	[Option ID = 29343] 3. 1,2		
[Option ID = 29345] Correct Answer :- • 2,0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>i</i> hx [Option ID = 7338] 2. <i>2i</i> hx [Option ID = 29346] 2. <i>2i</i> hx [Option ID = 29347] 3. <i>2i</i> hp _x [Option ID = 29348] 4. Zero [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>i</i> hx [Option ID = 29346] Www.FirstRanker.com	[Option ID = 29344] 4. 0,1		
Correct Answer :- • 2,0 [Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. ihx [Option ID = 7338] 1. ihx [Option ID = 29346] 2. $2ihx$ [Option ID = 29347] 3. $2ihp_x$ [Option ID = 29348] 4. Zero [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • ihx [Option ID = 29346] www.FirstRanker.com	[Option ID = 29345]		
[Option ID = 29342] 30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>i</i> hx [Option ID = 29346] 2. <i>2i</i> hx [Option ID = 29347] 3. <i>2i</i> hpx [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>i</i> hx [Option ID = 29346] www.FirstRanker.com	Correct Answer :- • 2,0		
30) The commutator, $\pi[x^2, p_x]$, is equal to [Question ID = 7338] 1. <i>i</i> hx [Option ID = 29346] 2. <i>2i</i> hx [Option ID = 29347] 3. <i>2i</i> hp _x [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>i</i> hx [Option ID = 29346] www.FirstRanker.com	[Option ID = 29342]		
[Question ID = 7338] 1. <i>ihx</i> [Option ID = 29346] 2. <i>2ihx</i> [Option ID = 29347] 3. <i>2ihp_x</i> [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>ihx</i> [Option ID = 29346] www.FirstRanker.com	30) The commutator, $\pi[\chi^2, p_x]$, is equal to	D	
[Option ID = 29346] 2. 2 <i>i</i> hx [Option ID = 29347] 3. 2 <i>i</i> hp _x [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>i</i> hx [Option ID = 29346] www.FirstRanker.com	[Question ID = 7338] 1. ihx		
[Option ID = 29347] 3. 2 <i>ihp_x</i> [Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • <i>ihx</i> [Option ID = 29346] WWW.FirstRanker.com	[Option ID = 29346] 2. 2 <i>ihx</i>		
<pre>[Option ID = 29348] 4. Zero [Option ID = 29349] Correct Answer :- • ihx [Option ID = 29346] Www.FirstRanker.com</pre>	[Option ID = 29347] 3. <i>2ihp_x</i>		
[Option ID = 29349] Correct Answer :- • ihx [Option ID = 29346] www.FirstRanker.com	[Option ID = 29348] 4. Zero		
Correct Answer :- • ihx [Option ID = 29346] WWW.FirstRanker.com	[Option ID = 29349]		
[Option ID = 29346] www.FirstRanker.com	Correct Answer :- • <i>ihx</i>		
www.FirstRanker.com	[Option ID = 29346]		
		www.FirstRanker.com	(cc)

[Question ID = 7339] 1. $\frac{\hbar^2 \pi^2}{32mL^2}$ [Option ID = 29350] 2. $\frac{\hbar^2 \pi^2}{2mL^2}$ [Option ID = 29351] 3. $\hbar^2 \pi^2$

Correct Answer :-• $\frac{\hbar^2 \pi^2}{32mL^2}$ [Option ID = 29350] 32) The normalized wave functions ψ_1 and ψ_2 , correspond to the ground state and the first excited states of a particle in a potential. The operator \hat{A} acts on the wave functions as $\hat{A}\psi_1 = \psi_2$ and $\hat{A}\psi_2 = \psi_1$. The expectation value of the operator \hat{A} for the state $\psi = (3\psi_1 + 4\psi_2)/5$ is

2. - 0.32 [Option ID = 29355]
3. 0 [Option ID = 29356]
4. 0.75 [Option ID = 29357]
Correct Answer :0.96 [Option ID = 29354]

33) The primitive translation vector of a two-dimensional lattice are $a = 2\hat{i} + \hat{j}$, $b = 2\hat{j}$. The primitive translation vector of its reciprocal lattice in x-direction is given by

[Question ID = 7341] 1. $a^* = \pi \hat{i}$ [Option ID = 29358] 2. $a^* = 2\pi \hat{i}$ [Option ID = 29359] 3. $a^* = \hat{i}$ [Option ID = 29360] 4. $a^* = \pi \hat{j}$ [Option ID = 29361] Correct Answer :-• $a^* = \pi \hat{i}$ [Option ID = 29358] 34) The mean drift s

 $4 mL^2$

 $16mL^2$

Δ

[Option ID = 29352] $\hbar^2 \pi^2$

[Option ID = 29353]

[Question ID = 7340] 1. 0.96 [Option ID = 29354]

34) The mean drift speed v_d of an electron in an applied electric field E with electron density 'n' can be expressed as

[Question ID = 7342] 1. $v_d = |\sigma E/ne|$

[Option ID = 29362] 2. $v_d = |\sigma E/e|$

Ranker.<mark>co</mark>m anker's choice www.FirstRanker.com www.FirstRanker.com 4. none of these [Option ID = 29365] Correct Answer :-• $v_d = |\sigma E/ne|$ [Option ID = 29362] 35) An un-damped oscillator has time period $\tau_0 = 1.0$ sec. Now a little damping is added so that its time period changes to $\tau_1 = 1.001$ sec. By what factor will the amplitude of oscillation decrease after 10 cycles? [Question ID = 7343] 1. ≈ 17 [Option ID = 29366] 2. ≈ 1 [Option ID = 29367] 3. $\approx 1/17$ [Option ID = 29368] 4. None of these [Option ID = 29369] Correct Answer :- ≈ 17 [Option ID = 29366] 36) A kilogram of water has a constant heat capacity of 4.2 kJ/K/kg over the temperature range 0°C to 100°C. The water was initially at 0° C and is brought into contact with a heat reservoir at 100° C. When the water is in thermal equilibrium with the heat reservoir calculate the change in entropy of the universe (Water + Reservoir). [Question ID = 7344] 1. 184.8 J/K [Option ID = 29370] 2. 2437.8 J/K [Option ID = 29371] 3. 0 J/K [Option ID = 29372] 4. 1310.8 J/K [Option ID = 29373] Correct Answer :-• 184.8 J/K [Option ID = 29370] 37) Two identical finite bodies of constant volume and of constant heat capacity at constant volume C_v , are used to drive a heat engine. Their initial temperatures are T_1 and T_2 . The maximum amount of work which can be obtained from the system is [Question ID = 7345] ^{1.} $C_{v} \{ 2 (T_1 T_2)^{1/2} - (T_1 + T_2) \}$

[Option ID = 29374] 2. $C_v (T_1 + T_2)$

[Option ID = 29375] 3. $C_v (T_1 T_2)^{1/2}$

[Option ID = 29376] 4. 0

[Option ID = 29377]

[Option ID = 29374]	www.FirstRanker.com	www.FirstRanker.com
38) For a system of bosons, we can write the	e Bose-Einstein distribution function as	$f(E_i) = \frac{1}{\exp(\alpha + \beta E_i) - 1}$, Where, $\beta = 1/k$
and $\alpha = \mu/k_B T$ (k _B = Boltzmann constant). If	μ represents the chemical potential, t	hen which one of the following is tru
[Question ID = 7346]		
1. $\mu \leq 0$		
[Option ID = 29378] 2. $\mu \ge 0$		
[Option ID = 29379] 3. $\mu \leq 1$		
[Option ID = 29380]		
4. $\mu \ge 1$		
[Option ID = 29381]		
Correct Answer :- • $\mu > 0$		
$\mu \ge 0$		
[obtion in = 54314]		
39) An ideal capacitor C is charged to a volt consists of a capacitor and an inductor only). $\omega_{a} = \frac{1}{2}$	age V_0 and connected at t = 0 across a . If the resonant frequency	n ideal inductor L (The circuit now
∽₀ /√LC		
, the voltage across the capacitor at time t > $[O_{\text{vostion}}]_{D=72471}$	0 is given by	
1. V_0 [Option ID = 29382]		
2. $V_0 \cos(\omega_0 t)$ [Option ID = 29383] 3. $V_2 \sin(\omega_0 t)$ [Option ID = 29384]		
4. $V_0 e^{-\omega_0 t} \cos(\omega_0 t)$		
[Option ID = 29385]		
Correct Answer :-		
• $v_0 \cos(\omega_0 t)$ [Option ID = 23365]		
40) Magnetic moment of proton $\left(\mu_p ight)$ in term	ns of nuclear magneton (μ_N) is	
[Question ID = 7348]		
$\mu_p = 1.5\mu_N$		
[Option ID = 29386] 2. $\mu_{\rm ex} = 2.7 \mu_{\rm ex}$		
$\mu_p = 2.7 \mu_N$		
[Option ID = 29387] 3. $\mu_p = 3.8\mu_N$		
[Option ID = 29388] 4. $\mu_p = 5.4 \mu_N$		
[Option ID = 29389]		
Correct Answer :-		
• $\mu_p = 2.7 \mu_N$		
[Option ID = 29387]		
41) Find the eigenvalues of A+4I where I is	identity matrix and A = $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$	
[Question ID – 7349]		

4. None of these (Option ID = 29393] Correct Answer :-• 5,7 [Option ID = 29391] 42) The limit $\lim_{n\to\infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}$ is [Question ID = 7350] 1. $\frac{1}{e}$ [Option ID = 29394] 2. 1

[Option ID = 29395] 3. 0 [Option ID = 29396] 4. *e*

[Option ID = 29397]

Correct Answer :-

• 1

[Option ID = 29395]

43) $\left(\frac{1+i}{\sqrt{2}}\right)^{49}$

is equal to [Question ID = 7351] (1+i)

1.
$$\left(\frac{1}{\sqrt{2}}\right)$$

[Option ID = 29398] 2. $\left(\frac{2+98i}{\sqrt{2^{49}}}\right)$

[Option ID = 29399]

3.
$$\left(\frac{1-t}{\sqrt{2}}\right)$$

[Option ID = 29400] 4. $(\frac{2-98i}{2})$

$$(\sqrt{2^{49}})$$

[Option ID = 29401]

Correct Answer :- (1 + i)

•
$$\left(\frac{1}{\sqrt{2}}\right)$$

[Option ID = 29398]

⁴⁴⁾ $\sin\left(\frac{\pi}{4}+i\right)$ is equal to

[Question ID = 7352] ^{1.} $\frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right) + \frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right)i$ [Option ID = 29402]

[Option ID = 29402]
2.
$$\frac{\sqrt{2}}{4}\left(e+\frac{1}{e}\right) + \frac{\sqrt{2}}{4}\left(e-\frac{1}{e}\right)i$$

.com	
www.FirstRanker.com	www.FirstRanker.com
e function $f(t) = 2^t$ is	
acting particles, each of mass m in a volume ermal equilibrium at a temperature T. Find	where the gravitational force is a -ve (z- the partition function
	• function $f(t) = 2^t$ is acting particles, each of mass m in a volume ermal equilibrium at a temperature T. Find

www.FirstRanker.com

[Option ID = 29422]

50) The quantum distribution function for any gas atom which follows MB, BE and FD statistics is given as a generalized single form

$$f_i = g_i / [exp(\epsilon_i - \mu) / (kT + J)]$$

If the distribution function follows the MB statistics in a classical limit then what will be the condition of the following. Symbols have their usual meanings

[Question ID = 7358] 1. $\frac{f_i}{g_i} \ll 1$; J = 1

[Option ID = 29426] 2. $\frac{f_i}{g_i} \ll 1$; J = 0

[Option ID = 29427] *G*;

3.
$$\frac{\delta i}{f_i} \gg 1$$
; J = 1

[Option ID = 29428]

4.
$$\frac{g_i}{f_i} \gg 1$$
; $J = -1$

[Option ID = 29429]

Correct Answer :-

• $\frac{f_i}{g_i} \ll 1$; $\mathbf{J} = \mathbf{0}$

[Option ID = 29427]