Topic:- ME MTECH S2

1) A family of arcs is obtained in the Smith chart by varying normalized reactance in a range of,
[Question ID = 4165]
1. 0 to 1 [Option ID $=16654$]
2. $-\infty$ to $+\infty$ [Option ID $=16655$]
3. 0 to $+\infty$ [Option ID $=16656$]
4. -1 to 0 [Option ID $=16657]$

Correct Answer :-

- $-\infty$ to $+\infty$ [Option ID $=16655$]

2) A 75Ω quarter wave transformer is connected to a 125Ω TV receiver. The impedance at the input of this transformer will be,
[Question ID = 4166]
1. 25Ω [Option $I D=16658$]
2. 45Ω [Option ID $=16659$]
3. 75Ω [Option ID $=16660$]
4. 100Ω [Option ID $=16661$]

Correct Answer :-

- 45Ω [Option ID = 16659]

3) If a coaxial line has dimensions $\mathrm{a} \times \mathrm{bcm}$, the conductivity of the conductors is σ and the permittivity of the filled medium is ε. Conductance per unit length of this coaxial transmission line is given as,
[Question ID = 4167]
1. $\frac{2 \pi \sigma}{\ln \left(\frac{b}{a}\right)}$
[Option ID $=16662$]
2. $\frac{2 \pi \varepsilon}{\ln \left(\frac{b}{a}\right)}$
[Option ID = 16663]
3. $\frac{1}{2 \pi \sigma \ln \left(\frac{b}{a}\right)}$
[Option ID = 16664]
4. $\frac{1}{2 \pi \varepsilon \ln \left(\frac{b}{a}\right)}$
[Option ID = 16665]

Correct Answer :-

- $\frac{2 \pi \sigma}{\ln \left(\frac{b}{a}\right)}$
[Option ID = 16662]

4) A lossless transmission line used in a TV Receiver has a capacitance of $50 \mathrm{pF} / \mathrm{m}$ and an inductance of $20 \mathrm{nH} / \mathrm{m}$. The characteristic impedence of a 10 meter long line will be then,
[Question ID = 4168]
1. 50Ω [Option ID $=16666]$
2. 20Ω [Option ID $=16667]$
3. 40Ω [Option ID $=16668]$
4. 100Ω [Option ID $=16669$]

Correct Answer :-

- 20Ω [Option ID = 16667]

5) A one-half wavelength lossless line of 50Ω is terminated to a load impedence of $50+j 50 \Omega$, its input impedance is, [Question ID = 4169]
1. $50+\mathrm{j} 50 \Omega$ [Option ID $=16670$]
2. $50-\mathrm{j} 50 \Omega$ [Option ID $=16671$]
3. $25-j 25 \Omega$ [Option ID -16672$]$
4. $25-\mathrm{j} 25 \Omega$ [Option ID $=16673$]
. 25 - $25 \cap$ [Option
[Question ID = 4170]
5. $\frac{1-\Gamma(d)}{1+\Gamma(d)}$
6. $\frac{\Gamma^{[\text {Option ID }}=}{1-\Gamma(d)}$
7. $\frac{\Gamma(d)}{\text { [Option ID }=}$
[Option ID = 16676]
8. $\frac{1+\Gamma(d)}{1-\Gamma(d)}$
[Option ID = 16677]
Correct Answer :-

- $\frac{1+\Gamma(d)}{1-\Gamma(d)}$
[Option ID = 16677]

7) A copper rectangular cavity resonator is structured by $3 \times 4 \times 1 \mathrm{~cm}^{3}$. The resonant frequency for $T M_{110}$ mode, is [Question ID = 4171]
1. 6.25 GHz [Option $\mathrm{ID}=16678$]
2. 5.81 GHz [Option ID $=16679$]
3. 8.65 GHz [Option ID $=16680$]
4. 2.04 GHz [Option $\mathrm{ID}=16681$]

Correct Answer :-

- 6.25 GHz [Option ID $=16678$]

8) A transmission line of characteristics impedance Z_{0} is terminated in a load having VSWR $=2$. The normalized load impedance z_{n} of the transmission line is
[Question ID = 4172]
1. Z_{0} [Option $I D=16682$]
2. 1 [Option ID $=16683$]
3. 0 [Option ID $=16684$]
4. 2 [Option ID = 16685]

Correct Answer :-

- 2 [Option ID = 16685]

9) In a Square coaxial transmission line shown in Fig., if the space between the conductors is filled with a material having a relative permittivity of 4.0 and the capacitance per unit length is $6.3 \varepsilon \mathrm{~F} / \mathrm{m}$, the characteristic impedance of this line will be,

[^0]1. $30 \Omega[$ Option ID $=16686$]
2. $50 \Omega[$ Option $I D=16687]$
3. 40Ω [Option ID $=16688$]
4. 200 [Option ID $=16689$]

Correct Answer :-

- 36 cm [Option ID $=16693$]

11) If a signal of 30 MHz is transmitted through a coaxial cable, which has a capacitance of $40 \mathrm{pF} / \mathrm{m}$ and an inductance of $900 \mathrm{nH} / \mathrm{m}$. The propagation velocity for a 1 m long cable is given by,
[Question ID = 4175]
1. $2.36 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[Option ID = 16694]
2. $1.66 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[Option ID = 16695]
3. $2.66 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[Option ID = 16696]
4. $1.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[Option ID = 16697]
Correct Answer :-

- $1.66 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[Option ID = 16695]

12) A perpendicularly polarized wave is incident at an angle of $\theta_{i}=15^{\circ}$ and it is propagating from medium 1 to medium 2. Medium 1 is characterized by $\varepsilon_{r 1}=9, \mu_{r 1}=1, \sigma_{1}=0$ and medium 2 is a free space. If the electric field intensity $E_{i}=3.0$ mV / m, the value of the magnetic field intensity H_{i}, will be,
[Question ID = 4176]
1. $23.87 \mu \mathrm{~A} / \mathrm{m}$
[Option ID = 16698]
2. $48.53 \mu \mathrm{~A} / \mathrm{m}$
[Option ID = 16699]
3. $15.46 \mu \mathrm{~A} / \mathrm{m}$
[Option ID = 16700]
4. $10 \mu \mathrm{~A} / \mathrm{m}$
[Option ID = 16701]

Correct Answer :-

- $23.87 \mu \mathrm{~A} / \mathrm{m}$
[Option ID $=16698$]

13) If capacitor plates of area ' A ' are placed ' d ' distance apart and the capacitor is filled with a material having dielectric constant ${ }_{\varepsilon}$, then the current through this capacitor is expressed as,
[Question ID = 4177]
1. $\frac{\varepsilon}{A d} \frac{\partial \mathrm{v}}{\partial \mathrm{t}}$
[Option ID = 16702]
2. $\operatorname{Ad} \partial \mathrm{v}$
$\bar{\varepsilon} \overline{\partial t}$
[Option ID = 16703]
3. $\frac{\varepsilon A}{d} \frac{\partial v}{\partial t}$
[Option ID = 16704]
4. $\frac{d}{\varepsilon \mathrm{~A}} \frac{\partial \mathrm{v}}{\partial \mathrm{t}}$
[Option ID = 16705]
5. j 2.09 [Option ID $=16708$]
6. j 10.8 [Option $\mathrm{ID}=16709$]

Correct Answer :-

- j 2.09 [Option ID = 16708]

15) A transmission line of characteristic impedance Z_{0} terminated by a load $R=(1 / 2) Z_{0}$ as shown in Fig., is connected to a matched source by a switch for a short time t to produce a pulse on the line.

If the propagation time along the line is T, where $T>t$, the values of the reflection coefficient at point A and point B are, respectively
[Question ID = 4179]

1. $1,-1 / 3[$ Option ID $=16710$]
2. $1,-1[$ Option ID $=16711]$
3. 2, -1 [Option ID = 16712]
4. $1 / 2,-1 / 2[$ Option ID $=16713]$

Correct Answer :-

- $1,-1 / 3$ [Option ID = 16710]

16) $A \lambda / 4$ transformer is connected in between generator and load, which have impedence ratio $Z_{L} / Z_{G}=0.16$ and $Z_{G}=$ 50Ω.The characteristic impedance of a $\lambda / 4$ transformer is
[Question ID = 4180]
1. 8Ω
[Option ID = 16714]
2. 20Ω
[Option ID = 16715]
3. 312Ω
[Option ID = 16716]
4. 25Ω
[Option ID = 16717]
Correct Answer :-

- 20Ω
[Option ID = 16715]

17) The input power needed to generate an output power of 3 W from an amplifier with a power gain of 30 dB is
[Question ID = 4181]
1. 1 W [Option $\mathrm{ID}=16718$]
2. 100 mW [Option $\mathrm{ID}=16719$]
3. 1 mW [Option ID = 16720]
4. 3 mW [Option ID = 16721]

Correct Answer :-

- 3 mW [Option ID = 16721]

18) The VSWR of a coaxial line which has a reflection coefficient of $0.6 \mathrm{e}^{-\mathrm{j} \angle 60^{\circ}}$, is
[Question ID = 4182]
1. 4
[Option ID = 16722]
2. 1
[Option ID = 16723]
19) When EM waves travel along a metallic waveguide in which there is a discontinuity due to some lossy material filled in a small length and the other end is terminated with a matched load. The discontinuity will cause
[Question ID = 4183]
1. Progressive waves throughout the line. [Option ID = 16726]
2. Progressive waves on the generator side and standing waves on the matched load side. [Option ID = 16727]
3. Standing waves on the generator side and progressive waves on the matched load side. [Option ID = 16728]
4. Standing waves thoughout the line. [Option ID = 16729]

Correct Answer :-

- Standing waves on the generator side and progressive waves on the matched load side. [Option ID = 16728]

20) The power output of an input power of 10 mW in the following system, is

[Question ID = 4184]
1. 5 dBm [Option ID $=16730$]
2. 10 dB [Option ID $=16731$]
3. 0 dBm [Option ID $=16732$]
4. 10 dBm [Option $\mathrm{ID}=16733$]

Correct Answer :-

- 0 dBm [Option ID $=16732$]

21) At microwave frequency, hybrid (H), admittance (Y) and impedance (Z) parameters can not be measured because, [Question ID = 4185]
1. Short and open circuit conditions are realizable over broad frequency range. [Option ID $=16734$]
2. Short and open circuit conditions are unrealizable over broad frequency range. [Option ID $=16735$]
3. Only short circuit condition is realizable over broad frequency range. [Option ID = 16736]
4. Only open circuit condition Is realizable over broad frequency range. [Option ID = 16737]

Correct Answer :-

- Short and open circuit conditions are unrealizable over broad frequency range. [Option ID = 16735]

22) Noise temperature (T) and gain(G) are two important parameters of satellite antenna. Out of the following, the antenna having largest G / T ratio is
[Question ID = 4186]
1. Cassegrain antenna [Option ID $=16738$]
2. Pyramidal antenna [Option ID $=16739$]
3. Parabolic reflector [Option $\mathrm{ID}=16740$]
4. Dipole antenna [Option ID $=16741$]

Correct Answer :-

- Parabolic reflector [Option ID = 16740]

23) A generator of 50Ω internal impedance and operating frequency of 1 GHz feeds a 75Ω load via a coaxial line of characteristics impedance 50Ω. The reflection coefficient on the feed line is,
[Question ID = 4187]
1. 0.2 [Option ID $=16742$]
2. 0.67 [Option ID $=16743$]
3. $1.5[$ Option ID $=16744]$
4. $1.05[$ Option $\mathrm{ID}=16745$]

Correct Answer :-

- 0.2 [Option ID = 16742]

24) A lossless transmission line is excited by a signal of voltage $5 \angle 0^{\circ} \mathrm{V}$ at 1.2 MHz . If the line is terminated by $\mathrm{Z}_{\mathrm{L}}\left(=\mathrm{Z}_{\mathrm{o}}\right)$ at a distance 1 km , the electrical length at the end point of the line is

[Question ID = 4188]

1. 4π
www.FirstRanker.com
[Option ID = 16749]

Correct Answer :-

- 8π
[Option ID = 16748]

25) The modulated microwave signal with 1 kHz square wave modulating signal is detected by [Question ID = 4189]
1. Tunable detector [Option $I D=16750$]
2. VSWR meter [Option ID = 16751]
3. Spectrum analyzer [Option ID $=16752$]
4. Slotted line [Option ID = 16753]

Correct Answer :-

- Tunable detector [Option ID = 16750]

26) A parabolic dish has a gain of 40 dB at 3 GHz . The diameter of this dish is
[Question ID = 4190]
1. 4.08 m [Option ID $=16754$]
2. 8.02 m [Option ID $=16755$]
3. 3.04 m [Option ID $=16756$]
4. 1.25 m [Option $\mathrm{ID}=16757$]

Correct Answer :-

- 4.08 m [Option ID = 16754]

27) A satellite operates with 12 GHz at a distance of 36000 km has effective isotropic radiated power (EIRP) of 20 dBW . The flux density at receiving antenna of each station is
[Question ID = 4191]
1. $2.21 \times 10^{-14} \mathrm{~W} / \mathrm{m}^{2}$ [Option $\mathrm{ID}=16758$]
2. $3.6 \times 10^{-14} \mathrm{~W} / \mathrm{m}^{2}$ [Option ID $=16759$]
3. $0.614 \times 10^{-14} \mathrm{~W} / \mathrm{m}^{2}$ [Option $\mathrm{ID}=16760$]
4. $2.0 \times 10^{-14} \mathrm{~W} / \mathrm{m}^{2}$ [Option ID $=16761$]

Correct Answer :-

- $0.614 \times 10^{-14} \mathrm{~W} / \mathrm{m}^{2}$ [Option ID = 16760]

28) A broadside array operating at 100 cm wavelength consist of 4 half-wave dipoles spaced 50 cm apart. Each element carries radio frequency current In the same phase and of magnitude 0.5 A . The radiated power will be [Question ID = 4192]
1. $34 \pi^{2} \mathrm{~W}$ [Option ID $=16762$]
2. $16 \pi^{2} \mathrm{~W}$ [Option ID $=16763$]
3. $20 \pi^{2} \mathrm{~W}$ [Option ID $=16764$]
4. $50 \pi^{2} \mathrm{~W}$ [Option ID $=16765$]

Correct Answer :-

- $20 \pi^{2}$ W [Option ID $=16764$]

29) Charge needed within a unit sphere centred at the origin for producing a potential field, $V=-6 r^{5} / \varepsilon_{0}$ for the distance r ≤ 1 meter, is
[Question ID = 4193]
1. 30π Coulomb
[Option ID = 16766]
2. 240π Coulomb
[Option ID = 16767]
3. 120π Coulomb
[Option ID = 16768]
4. 180π Coulomb
[Option ID = 16769]
Correct Answer :-

- 120π Coulomb
[Option ID = 16768]

3. 27 MHz [Option $\mathrm{ID}=16772$]
4. 45 MHz [Option ID $=16773$]

Correct Answer :-

- 45 MHz [Option ID = 16773]

31) For a electricity short dipole of length 80 cm operating at 30 MHz , the loss resistance ($\mathrm{R}_{\text {loss }}$) is 1.5Ω. Its radiation efficiency is
[Question ID = 4195]
1. 92.4%
[Option ID = 16774]
2. 94.9%
[Option ID = 16775]
3. 102.5%
[Option ID = 16776]
4. 86.7%
[Option ID = 16777]
Correct Answer :-

- 94.9 \%
[Option ID $=16775$]

32) A Hertzien dipole of length $\lambda / 50$ has an efficiency of 6.5%. The total quality factor for this dipole is
[Question ID = 4196]
1. 1
[Option ID = 16778]
2. 0.20
[Option ID = 16779]
3. 7
[Option ID = 16780]
4. 5.5
[Option ID = 16781]

Correct Answer :-

- 0.20
[Option ID = 16779]

33) The value of integral $\int_{0}^{\pi} \sin ^{3} \theta d \theta$ is given by
[Question ID = 4197]
1. $8 / 3$
[Option ID = 16782]
2. $4 / 3$
[Option ID = 16783]
3. $1 / 2$
[Option ID = 16784]
4. $2 / 3$
[Option ID = 16785]
Correct Answer :-

- $4 / 3$
[Option ID = 16783]

34) The region specified by $\left\{(\rho, \phi, z): 3 \leq \rho \leq 5, \frac{\pi}{8} \leq \phi \leq \frac{\pi}{4}, 3 \leq z \leq 4.5\right\}$ in cylindrical coordinates has volume of
[Option ID = 16788]
4. 5.725
[Option ID = 16789]

Correct Answer :-

- 4.712
[Option ID = 16786]

35) With the initial condition $x(1)=0.5$ the solution of the differential equation, $t \frac{d x}{d t}+x=t$ is
[Question ID = 4199]
1. $x=\frac{t}{2}$
[Option ID = 16790]
2. $x=t-\frac{1}{2}$
[Option ID = 16791]
3. $x=t^{2}-\frac{1}{2}$
[Option ID $=16792$]
4. $x=\frac{t^{2}}{2}$
[Option ID = 16793]

Correct Answer :-

- $x=\frac{t}{2}$
[Option ID = 16790]

36) The Newton - Raphson method is used to solve the equation $f(x)=x^{3}-5 x^{2}+6 x-8=0$. Taking the initial guess as $x=$ 5 , the solution obtained at the end of the first iteration is
[Question ID = 4200]
1. 2.2903
[Option ID = 16794]
2. 4.515
[Option ID = 16795]
3. 4.2903
[Option ID = 16796]
4. 2.515
[Option ID = 16797]
Correct Answer :-

- 4.2903
[Option ID = 16796]

37) The inverse Laplace transform of the function $\frac{s+5}{(s+1)(s+3)}$ is equal to
[Question ID = 4201]
1. $2 e^{-t}+e^{-3 t}$
[Option ID = 16798]
2. $e^{-t}+2 e^{-3 t}$
[Option ID = 16799]
3. $e^{-t}-2 e^{-3 t}$
[Option ID = 16800]
4. $2 e^{-t}-e^{-3 t}$
[Option ID = 16801]
Correct Answer :-

- $2 e^{-t}-e^{-3 t}$
 the sampling impulse train should be
[Question ID = 4202]

1. 4 MHz
[Option ID = 16802]
2. 8 GHz
[Option ID = 16803]
3. 4 GHz
[Option ID = 16804]
4. 8 MHz
[Option ID = 16805]
Correct Answer :-

- 8 MHz
[Option ID = 16805]

39) A message signal given by $m t=\left(\frac{1}{2}\right) \cos \omega_{1} t-\left(\frac{1}{2}\right) \sin \omega_{1} t$ is amplitude-modulated with a carrier of frequency ω_{c} to generate $s(t)=[1+m(t)] \cos \omega_{c} t$.

What is the power efficiency achieved by this modulation scheme?
[Question ID = 4203]

1. 20%
[Option ID = 16806]
2. 11.11%
[Option ID = 16807]
3. 8.33%
[Option ID = 16808]
4. 25%
[Option ID = 16809]
Correct Answer :-

- 20\%
[Option ID $=16806$]

40) The number of quantization levels with 8 -bits required to reduce the quantization noise by a factor of 4 would be [Question ID = 4204]
1. 1024 [Option ID $=16810$]
2. 64 [Option ID $=16811$]
3. 256 [Option ID $=16812]$
4. $512[$ Option ID $=16813]$

Correct Answer :-

- 512 [Option ID = 16813]

41) An ideal band - pass channel $500 \mathrm{~Hz}-2000 \mathrm{~Hz}$ is deployed for communication. A modem is designed to transmit bits at the rate of 4800 bits/s using 16 - QAM. The roll off factor of a pulse with a raised cosine spectrum that utilizes the entire frequency band is
[Question ID = 4205]
1. 0.20
[Option ID = 16814]
2. 0.25
[Option ID = 16815]
3. 0.30
[Option ID = 16816]
4. 0.15
[Option ID = 16817]
Correct Answer :-

- 0.25

[Question ID = 4206]

1. 1200 Hz
[Option ID = 16818]
2. 400 Hz
[Option ID = 16819]
3. 600 Hz
[Option ID = 16820]
4. 1400 Hz
[Option ID = 16821]

Correct Answer :-

- 1200 Hz
[Option ID = 16818]

43) The Vestigial Side Band (VSB) modulation is preferred in TV systems because It reduces the bandwidth requirement to half it avoids phase distortion at low frequency
[Question ID = 4207]
1. 1 only
[Option ID = 16822]
2. 2 only
[Option ID = 16823]
3. Neither 1 nor 2
[Option ID = 16824]
4. Both 1 and 2
[Option ID = 16825]

Correct Answer :-

- Neither 1 nor 2
[Option ID = 16824]

44) A communication channel distributed by Gaussian noise has a bandwidth of 6 kHz and S / N ratio of 15 .The maximum transmission rate that such a channel can support is
[Question ID = 4208]
1. $48 \mathrm{kbits} / \mathrm{s}$ [Option ID $=16826$]
2. $24 \mathrm{kbits} / \mathrm{sec}[$ Option $\mathrm{ID}=16827$]
3. $2.4 \mathrm{kbits} / \mathrm{s}$ [Option ID $=16828$]
4. $32 \mathrm{kbits} / \mathrm{s}$ [Option $\mathrm{ID}=16829$]

Correct Answer :-

- 24 kbits/sec [Option ID = 16827]

45) In the given circuit, the value of V_{x} is

[Question ID = 4209]
1. 12 V

[Uption ID = 16830]

2. 10 V

Correct Answer :-

- 8 V
[Option ID = 16833]

46) In the circuit shown, the current I flowing through the 50Ω resistor will be zero if the value of Capacitor C (in $\mu \mathrm{F}$) is

[Question ID = 4210]
1. $15 \mu \mathrm{~F}$
[Option ID = 16834]
2. $20 \mu \mathrm{~F}$
[Option ID = 16835]
3. $10 \mu \mathrm{~F}$
[Option ID = 16836]
4. $22.5 \mu \mathrm{~F}$
[Option ID = 16837]

Correct Answer :-

- $20 \mu \mathrm{~F}$
[Option ID = 16835]

47) In the circuit shown, the initial voltages across the capacitors C_{1} and C_{2} are 1 V and 3 V , respectively. The switch is closed at time $t=0$. The total energy dissipated (in Joules) in the resistor R until steady state is reached, is

[Question ID = 4211]
1. 1.5 J
[Option ID = 16838]
2. 1.0 J
[Option ID = 16839]
3. 0.5 J
[Option ID = 16840]
4. 2 J
[Option ID = 16841]

Correct Answer :-

- 1.5 J
[Option ID = 16838]

48) The driving point impedance of the following network is given by $Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}$

2. $L=5 H, R=0.5 \Omega, C=0.1 \mathrm{~F}$
[Option ID = 16843]
3. $L=0.1 \mathrm{H}, \mathrm{R}=2 \Omega, \mathrm{C}=5 \mathrm{~F}$
[Option ID $=16844]$
4. $L=5 H, R=2 \Omega, C=0.1 F$
[Option ID = 16845]

Correct Answer :-

- $\mathrm{L}=0.1 \mathrm{H}, \mathrm{R}=2 \Omega, \mathrm{C}=5 \mathrm{~F}$
[Option ID = 16844]

49) In the following graph, the number of trees (P) and the number number of cut - sets (Q) are
(1)

[Question ID = 4213]
1. $P=2, Q=6$ [Option $I D=16846$]
2. $P=2, Q=2$ [Option $I D=16847$]
3. $P=4, Q=6$ [Option $I D=16848$]
4. $P=4, Q=10$ [Option $I D=16849$]

Correct Answer :-

- $P=4, Q=6$ [Option $I D=16848$]

50) If $z=e^{x} \sin y, x=\log _{\varepsilon} t$ and $y=t^{2}$ then $\frac{d z}{d t}$ is given by
[Question ID = 4214]
1. $\frac{e^{x}}{t}\left(\sin y-2 t^{2} \cos y\right)$
[Option ID = 16850]
2. $\frac{e^{x}}{t}\left(\sin y+t^{2} \cos y\right)$
[Option ID = 16851]
3. $\frac{e^{x}}{t}\left(2 \sin y+t^{2} \cos y\right)$
[Option ID = 16852]
4. $\frac{e^{x}}{t}\left(\sin y+2 t^{2} \cos y\right)$
[Option ID = 16853]
Correct Answer :-

- $\frac{e^{x}}{t}\left(\sin y+2 t^{2} \cos y\right)$
[Option ID = 16853]

51) If, $A=\left[\begin{array}{cc}3 x & 0 \\ x & x\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 3\end{array}\right]$. Then the value of x is
[Question ID = 4215]
1. $1 / 3$
[Option ID = 16854]
2. $1 / 2$
[Option ID = 16855]
$3.1 / 6$
[Option ID = 16856]
3. 1
52) The minimum value of $\left(x^{2}+\frac{250}{x}\right)$
[Question ID = 4216]
1. 45
[Option ID = 16858]
2. 50
[Option ID = 16859]
3. 25
[Option ID = 16860]
4. 75
[Option ID = 16861]

Correct Answer :-

- 75
[Option ID = 16861]

53) $\int \frac{e^{x} d x}{e^{x}-1}$ is equal to
[Question ID = 4217]
1. $\log \left(e^{x}+1\right)$
[Option ID = 16862]
2. $\log \left(1-e^{x}\right)$
[Option ID = 16863]
3. $\log \left(e^{-x}-1\right)$
[Option ID = 16864]
4. $\log \left(e^{x}-1\right)$
[Option ID = 16865]
Correct Answer :-

- $\log \left(e^{x}-1\right)$
[Option ID = 16865]

54) A box contains 5 black and 5 red balls.Two balls are randomly picked one after another from the box, without replacement. The probability for balls being red is
[Question ID = 4218]
1. $2 / 9$ [Option ID $=16866$]
2. $2 / 5$ [Option ID $=16867$]
3. $1 / 2$ [Option ID $=16868$]
4. $1 / 7$ [Option ID $=16869$]

Correct Answer :-

- 2/9 [Option ID = 16866]

55) The value of $\int_{0.2}^{2.2} x^{2} e^{x} d x$ by using one-segment trapezoidal rule is most nearly
[Question ID = 4219]
1. 11.672
[Option ID = 16870]
2. 43.729
[Option ID = 16871]
3. 24.119
[Option ID = 16872]
4. 31.807
[Option ID = 16873]
Correct Answer :-

- 43.729

```
                            tFinstRarqkeM!compd their semetric mean is s, the numbers are
Firstranker's choice
[Question ID = 4220]
1. 24,5
[Option ID = 16874]
2. 14,7
[Option ID = 16875]
3. 8,11
[Option ID = 16876]
4. 16,4
[Option ID = 16877]
```

Correct Answer :-

- 16, 4
[Option ID = 16877]

57) A random process is defined by $X(t)=A$ where A is continous random variable uniformly distributed on $(0,2)$. The auto correlation function and mean of the process are
[Question ID = 4221]
1. $1 / 2$ and $1 / 3$
[Option ID = 16878]
2. $1 / 3$ and 3
[Option ID = 16879]
3. $1 / 2$ and 1
[Option ID = 16880]
4. $8 / 3$ and 2
[Option ID = 16881]
Correct Answer :-

- $8 / 3$ and 2
[Option ID = 16881]

58) The density function of two random variable X and Y is
$\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}\frac{1}{12} & 0<x<6 \text { and } 0<y<4 \\ 0 & \text { else where }\end{array}\right.$

The expected value of the function $\mathrm{g}(\mathrm{x}, \mathrm{y})=(X Y)^{2}$ is
[Question ID = 4222]

1. 96
[Option ID = 16882]
2. 32
[Option ID = 16883]
3. 48
[Option ID = 16884]
4. 128
[Option ID = 16885]
Correct Answer :-

- 128
[Option ID = 16885]

59) The radiation resistance of an infinitesimal dipole of overall length $l=\lambda / 40$ is
[Question ID = 4223]
1. 2Ω [Option ID $=16886$]
2. 50Ω [Option ID $=16887$]

3. 0.316Ω [Option ID $=16889$]
4. 150 samples per second
[Option ID = 16890]
5. 300 samples per second
[Option ID = 16891]
6. 250 samples per second
[Option ID = 16892]
7. 200 samples per second
[Option ID = 16893]

Correct Answer :-

- 250 samples per second
[Option ID = 16892]

61) In a PCM system, if the code word length is increased from 6 to 10 bits, the signal to quantization noise ratio improves by the factor.
[Question ID = 4225]
1. 512
[Option ID = 16894]
2. 128
[Option ID = 16895]
3. 64
[Option ID = 16896]
4. 256
[Option ID = 16897]

Correct Answer :-

- 256
[Option ID = 16897]

62) In C language, what is the output of the following code
int main ()
\{
int $\mathrm{a}=1, \mathrm{~b}=9, \mathrm{c} ; \mathrm{c}=\mathrm{a}==\mathrm{b} ; \operatorname{printf("\% \mathrm {i}^{\prime },\mathrm {c});~}$
\}
[Question ID = 4226]
1. 4
[Option ID = 16898]
2. 0
[Option ID = 16899]
3. 1
[Option ID = 16900]
4. Error
[Option ID = 16901]
Correct Answer :-

- 0
[Option ID = 16899]

63) In C language, what is the output of the following code
int main ()
\{
int $a=63, b=9$;
printf("\%d",a>>a/b-2);
2. 2
[Option ID = 16903]
3. 3
[Option ID = 16904]
4. 1
[Option ID = 16905]

Correct Answer :-

- 1
[Option ID = 16905]

64) The decimal equivalent of hex number 1 A 53 is
[Question ID $=4228$]
1. 6793 [Option ID $=16906$]
2. 6973 [Option ID $=16907$]
3. 6379 [Option ID $=16908$]
4. 6739 [Option ID $=16909$]

Correct Answer :-

- 6739 [Option ID = 16909]

65) A TDM link has 20 signal channels and each channel is sampled 8000 times/sec. Each sample is represented by seven binary bits and contains an additional bit for synchronization. The total bit rate for the TDM link is
[Question ID = 4229]
1. 1280 K bits/sec
[Option ID = 16910]
2. 1180 K bits/sec
[Option ID = 16911]
3. 1280 M bits $/ \mathrm{sec}$
[Option ID = 16912]
4. 1180 M bits $/ \mathrm{sec}$
[Option ID = 16913]
Correct Answer :-

- 1280 K bits/sec
[Option ID = 16910]

66) The analog output voltage $\left(\mathrm{V}_{0}\right)$ of 6-bit digital-to-analog converter ($\mathrm{R}-2 \mathrm{R}$ ladder network) with $\mathrm{V}_{\text {ref }}$ as 7 V , when the digital input is 011100 is
[Question ID = 4230]
1. 4.65 V
[Option ID $=16914$]
2. 8 V
[Option ID $=16915$]
3. 7.75 V
[Option ID = 16916]
4. 3.06 V
[Option ID = 16917]

Correct Answer :-

- 3.06 V
[Option ID = 16917]

67) If a tuned collector oscillator in a radio receiver has a fixed inductance of $50 \mu \mathrm{H}$ and has to be tuneable over the frequency band of 600 to 1000 kHz , then the range of variable capacitor to be used is
www.FirstRanker.com
[Option ID = 16921]

Correct Answer :-

- 1410 pF to 507 pF
[Option ID = 16920]

68) If current gain of a transistor in CE mode is 48 then its common - base current gain and the base current when the emitter current is 5 mA are
[Question ID = 4232]
1. 0.98 and $1.0 \times 10^{-4} \mathrm{~A}$ [Option $\mathrm{ID}=16922$]
2. 0.99 and $2.5 \times 10^{-4} \mathrm{~A}$ [Option $\mathrm{ID}=16923$]
3. 0.97 and $1.2 \times 10^{-5} \mathrm{~A}$ [Option $\mathrm{ID}=16924$]
4. 0.90 and $1.5 \times 10^{-4} \mathrm{~A}$ [Option $\mathrm{ID}=16925$]

Correct Answer :-

- 0.98 and $1.0 \times 10^{-4} \mathrm{~A}$ [Option ID = 16922]

69) An N - channel JFET requires a series resistor R_{s} to self bias with $\mathrm{I}_{\mathrm{DSs}}=-6 \mathrm{~V}$. The value of this resistor is
[Question ID = 4233]
1. 166Ω [Option ID $=16926$]
2. 18.2Ω [Option ID = 16927]
3. 83.25Ω [Option ID $=16928$]
4. 333Ω [Option ID = 16929]

Correct Answer :-

- 333Ω [Option ID = 16929]

70) In which of the following diodes, the width of the junction barrier is very high
[Question ID = 4234]
1. Photo diode [Option ID $=16930$]
2. PIN diode [Option ID = 16931]
3. Schottky diodes [Option ID $=16932$]
4. Tunnel diode [Option ID = 16933]

Correct Answer :-

- PIN diode [Option ID = 16931]

71) The sensitivity of photo diode depends on
[Question ID = 4235]
1. Depletion region width and excess carrier lifetime [Option ID = 16934]
2. Excess carrier life time and forward bias current [Option ID = 16935]
3. Forward bias current and light intensity [Option ID = 16936]
4. Light intensity and depletion region width [Option ID = 16937]

Correct Answer :-

- Light intensity and depletion region width [Option ID = 16937]

72) The directional derivative of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at the point $(1,1,3)$ in the direction of the vector $\hat{a}=\hat{\imath}-\hat{k}$ is
[Question ID = 4236]
1. 4 [Option ID $=16938$]
2. $-\frac{4}{\sqrt{2}}$
[Option ID = 16939]
3. $\frac{4}{\sqrt{2}}$
[Option ID = 16940]
4. -4
[Option ID = 16941]
Correct Answer :-

- $-\frac{4}{\sqrt{2}}$
[Option ID = 16942]

2. $5 F\left(\frac{s}{5}\right)$
[Option ID = 16943]
3. $e^{i 5 s} F(s)$
[Option ID = 16944]
4. $e^{i 5 s} F \frac{S}{5}$
[Option ID = 16945]
Correct Answer :-

- $e^{i 5 s} F(s)$
[Option ID = 16944]

74) The intercepts made by the plane $3 x+4 y+2 z-12=0$ on the coordinate axes are
[Question ID = 4238]
1. $(4,3,6)$ [Option ID $=16946]$
2. $(0,-1,0)$ [Option $I D=16947]$
3. $(-1,-1,-1)$ [Option ID $=16948]$
4. $(1,0,-1)$ [Option ID $=16949$]

Correct Answer :-

- $(4,3,6)$ [Option ID $=16946]$

75) The solution of $\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} d x=$
[Question ID = 4239]
1. $\frac{\pi}{2}$
[Option ID = 16950]
2. $-\pi$
[Option ID = 16951]
3. $-\frac{\pi}{2}$
[Option ID = 16952]
4. π
[Option ID = 16953]

Correct Answer :-

- π
[Option ID = 16953]

76) The argument of the complex number $z=\frac{1+2 i}{1-2 i}$ is
[Question ID = 4240]
1. $\tan ^{-1}\left(-\frac{1}{2}\right)$
[Option ID = 16954]
2. $\tan ^{-1}\left(-\frac{1}{3}\right)$
[Option ID = 16955]
3. $\tan ^{-1}\left(-\frac{4}{3}\right)$
[Option ID = 16956]
4. $\tan ^{-1}\left(-\frac{\sqrt{2}}{3}\right)$

- $\tan ^{-1}\left(-\frac{4}{2}\right)$
 $y=7$ at $x=1$ is
[Question ID = 4241]

1. $38.04 e^{-3 x}$
[Option ID = 16958]
2. $76.05 e^{-2 x}$
[Option ID = 16959]
3. $98.23 e^{-\frac{x}{2}}$
[Option ID = 16960]
4. $19.02 e^{-x}$
[Option ID = 16961]

Correct Answer :-

- $19.02 e^{-x}$
[Option ID = 16961]

78) Let $A=\left[\begin{array}{cc}4 & -0.1 \\ 0 & 1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 / 2 & \alpha \\ 0 & \beta\end{array}\right]$ then $\alpha+\beta=$
[Question ID = 4242]
1. $-\frac{25}{40}$
[Option ID = 16962]
2. $\frac{21}{20}$
[Option ID = 16963]
3. $\frac{41}{40}$
[Option ID = 16964]
4. $-\frac{7}{20}$
[Option ID = 16965]
Correct Answer :-

- $\frac{41}{40}$
[Option ID = 16964]

79)

store data or information temporarily and pass it on as directed by the control unit
[Question ID = 4243]

1. address [Option ID $=16966$]
2. register [Option ID $=16967$]
3. number [Option ID $=16968$]
4. memory [Option ID $=16969$]

Correct Answer :-

- register [Option ID = 16967]

80) Working of the WAN generally involves
[Question ID = 4244]
1. ATM [Option ID $=16970$]
2. frame delay [Option ID = 16971]
3. user agent [Option ID $=16972$]
4. satellite [Option ID $=16973$]

Correct Answer :-

- satellite [Option ID = 16973]

81) Positive $4 N D$ gate is_also____ negative

82) What is the output of the following code?
\#include < iostream.h >
void main ()
\{
int main ;
main $=100$;
count << main ++<< end;
\}
[Question ID = 4246]
1. Error : one cannot use main as identifier
[Option ID = 16978]
2. 100
[Option ID = 16979]
3. 101
[Option ID = 16980]
4. None of these
[Option ID = 16981]
Correct Answer :-

- 100
[Option ID = 16979]

83) What is the output of the following code?
\#include< iostream.h>
Void main()
\{
bool $\mathrm{a}=10$;
count \ll a $\lll<$ endl ;
\}
[Question ID = 4247]
1. error
[Option ID = 16982]
2. false
[Option ID = 16983]
3. 10
[Option ID = 16984]
4. 1
[Option ID = 16985]

Correct Answer :-

- 1
[Option ID = 16985]

84) A transmission line of characteristic impedance of 50Ω is terminated by a load impedance of (100-j50) Ω and is fed by a matched generator. The measured voltage amplitude at the load terminal is 100 V . The VSWR on the line is
[Question ID = 4248]
1. 1.583 [Option $\mathrm{ID}=16986$]
2. 2.562 [Option ID $=16987]$
3. 2.618 [Option ID $=16988$]
4. 1.684 [Option ID $=16989$]
5. Parallel [Option ID $=16992$]
6. Matched [Option ID $=16993$]

Correct Answer :-

- Matched [Option ID = 16993]

86) The characteristics impedance of a quarter wave line is 50Ω and load impedance of 20Ω, the input impedance to this transformer is
[Question ID = 4250]
1. 50Ω [Option ID $=16994]$
2. 125Ω [Option ID $=16995$]
3. 25Ω [Option ID $=16996$]
4. 150Ω [Option ID $=16997]$

Correct Answer :-

- 125Ω [Option ID = 16995]

87) The minimum impedance of a transmission line is 75Ω with SWR 4 is
[Question ID = 4251]
1. 19.86Ω [Option ID $=16998$]
2. 18.75Ω [Option ID $=16999$]
3. 16.34 [Option ID = 17000]
4. 14.44Ω [Option ID $=17001$]

Correct Answer :-

- 18.75Ω [Option ID $=16999$]

88) The power reflected in a transmission line, when its reflection coefficient and input power are 0.45 and 18 W [Question ID = 4252]
1. 3.645 W [Option $\mathrm{ID}=17002$]
2. 4.563 W [Option $\mathrm{ID}=17003$]
3. 2.50 W [Option $\mathrm{ID}=17004$]
4. 5.368 W [Option $\mathrm{ID}=17005$]

Correct Answer :-

- 3.645 W [Option ID = 17002]

89) Diffusion constants D_{p}, D_{n} and mobility μ_{P} and μ_{n} and absolute temperature T are related as
[Question ID = 4253]
1. $\frac{D_{p}}{\mu_{p}}=\frac{D_{n}}{\mu_{n}}=\frac{T}{11600}$
[Option ID $=17006$]
2. $\frac{D_{p}}{\mu_{p}}=\frac{D_{n}}{\mu_{n}}=\frac{11600}{T}$
[Option ID = 17007]
3. $\frac{D_{p}}{\mu_{p}}=\frac{\mu_{n}}{D_{n}}=\frac{T}{11600}$
[Option ID = 17008]
4. $\frac{D_{p}}{\mu_{p}}=\frac{\mu_{n}}{D_{n}}=\frac{11600}{T}$
[Option ID = 17009]
Correct Answer :-

- $\frac{D_{p}}{\mu_{p}}=\frac{D_{n}}{\mu_{n}}=\frac{T}{11600}$
[Option ID = 17006]

90) Hall coefficient K_{H} and charge density ρ are related as
[Question ID = 4254]
1. $K_{H}=\rho$
[Option ID = 17010]
2. $K_{H}=\frac{1.5}{\rho}$
3. $K_{H}=\frac{\rho}{1.5}$
[Option ID = 17013]

Correct Answer :-

- $K_{H}=\frac{1}{\rho}$
[Option ID $=17012$]

91) If E is energy level of electron and E_{F} is Fermi level, then
[Question ID = 4255]
1. all quantum states with E less than E_{F} will be empty at $\mathrm{T}=0$
[Option ID = 17014]
2. all quantum states with E higher than E_{F} will be occupied at $\mathrm{T}=0$
[Option ID = 17015]
3. all quantum states with E less than E_{F} will be occupied at $\mathrm{T}=0$
[Option ID = 17016]
4. none of these
[Option ID = 17017]
Correct Answer :-

- all quantum states with E less than E_{F} will be occupied at $\mathrm{T}=0$
[Option ID = 17016]

92) In a uniformly doped abrupt pn junction, the doping level of the n side is 4 times the doping level of p side. The ratio of the depletion layer width is
[Question ID = 4256]
1. 0.2 [Option ID $=17018$]
2. 0.25 [Option ID $=17019$]
3. 0.5 [Option ID $=17020$]
4. 1.0 [Option ID $=17021$]

Correct Answer :-

- 0.25 [Option ID = 17019]

93) A silicon bar is doped with donor impurities $N_{D}=2.25 \times 10^{15} / \mathrm{cm}^{3}$. Given the intrinsic carrier concentration of silicon at $\mathrm{T}=300 \mathrm{~K}$ is $\mathrm{n}_{\mathrm{i}}=1.5 \times 10^{10} / \mathrm{cm}^{3}$. Assuming complete impurity ionization, the equilibrium electron and hole concentrations are [Question ID = 4257]
1. $\mathrm{n}_{0}=1.5 \times 10^{16} / \mathrm{cm}^{3}$ and $\mathrm{p}_{0}=1.5 \times 10^{5} / \mathrm{cm}$ [Option ID $=17022$]
2. $\mathrm{n}_{0}=1.5 \times 10^{10} / \mathrm{cm}$ and $\mathrm{P}_{0}=1.5 \times 10^{15} / \mathrm{cm}^{3}$ [Option $\mathrm{ID}=17023$]
3. $\mathrm{n}_{0}=2.25 \times 10^{15} / \mathrm{cm}^{3}$ and $\mathrm{p}_{0}=1.5 \times 10^{10} / \mathrm{cm}^{3}$ [Option ID = 17024]
4. $n_{0}=2.25 \times 10^{15} / \mathrm{cm}^{3}$ and $p_{0}=1 \times 10^{5} / \mathrm{cm}^{3}$ [Option ID $=17025$]

Correct Answer :-

- $\mathrm{n}_{0}=2.25 \times 10^{15} / \mathrm{cm}^{3}$ and $\mathrm{p}_{0}=1 \times 10^{5} / \mathrm{cm}^{3}$ [Option ID $=17025$]

94) Consider a Ge diode operating at $27^{\circ} \mathrm{C}$ and just beyond the threshold voltage of Ge , the value of $\mathrm{dV} / \mathrm{dT}$ is
[Question ID = 4258]
1. $-2.3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ [Option ID $=17026$]
2. $-2.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ [Option $\mathrm{ID}=17027$]
3. $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ [Option ID $=17028$]
4. $-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ [Option ID $=17029$]

Correct Answer :-

- $-2.3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ [Option ID $=17026$]

95) The reverse saturation current of a reverse - biased PN junction diode increases 32 times due to rise in ambiant temperature. If the original temperature was $40^{\circ} \mathrm{C}$, What is the final temperature?
[Question ID = 4259]
1. $72^{\circ} \mathrm{C}$ [Option ID $=17030$]
2. $45^{\circ} \mathrm{C}$ [Option $\mathrm{ID}=17031$]
3. $90^{\circ} \mathrm{C}$ [Option ID $=17032$]
4. $50^{\circ} \mathrm{C}$ [Option ID $=17033$]
[Question ID = 4260]
5. $0.2 \sin \omega t \cos \omega t+2 \omega \cos \omega t(1+0.1 \sin \omega t)$
[Option ID $=17034$]
6. $0.1 \sin \omega t+2 \omega \cos \omega t$
[Option ID $=17035$]
7. $0.1 \cos \omega t+2 \omega \sin \omega t$
[Option ID = 17036]
8. $0.2 \sin \omega t+2 \omega \sin (1+0.1 \sin \omega t)$
[Option ID = 17037]

Correct Answer :-

- $0.2 \sin \omega t \cos \omega t+2 \omega \cos \omega t(1+0.1 \sin \omega t)$
[Option ID = 17034]

97) In the circuit shown in figure, the power loss across the 5Ω resistor is

[Question ID = 4261]
1. 12 W [Option ID $=17038]$
2. 51.2 W [Option ID $=17039$]
3. 24 W [Option ID $=17040$]
4. 34 W [Option ID $=17041]$

Correct Answer :-

- 51.2 W [Option ID = 17039]

98) In the circuit shown in the figure, the magnitude of current through the 5Ω resistor is

[Question ID = 4262]
1. 0.8 A [Option ID $=17042$]
2. 1.5 A [Option $\mathrm{ID}=17043$]
3. 3.0 A [Option ID $=17044]$
4. 2.3 A [Option ID $=17045$]

Correct Answer :-

- 1.5 A [Option ID = 17043]

99) What should be the value of R to have maximum power transfer in the circuit shown below

[Question ID = 4263]

[Question ID $=4264$]
1. $\frac{1+R C s}{R+L s}$
[Option ID = 17050]
2. $\frac{1+R C s+L C s^{2}}{R+L s}$
[Option ID = 17051]
3. $\frac{s+R C s^{2}+L C}{R+L s+C s^{2}}$
[Option ID = 17052]
4. $\frac{1+L C s^{2}}{R+L s}$
[Option ID = 17053]
Correct Answer :-

- $\frac{1+R C s+L C s^{2}}{R+L s}$
[Option ID = 17051]

[^0]: [Question ID = 4173]

