

50+j50 Ω [Option ID = 16670]

• 30Ω [Option ID = 16686]

nrough a coaxial cable, which has a capac 1m long cable is given by,	itance of 40 pF/m and an inductance o
nrough a coaxial cable, which has a capac 1m long cable is given by,	itance of 40 pF/m and an inductance o
nrough a coaxial cable, which has a capac 1m long cable is given by,	itance of 40 pF/m and an inductance o
nrough a coaxial cable, which has a capac 1m long cable is given by,	itance of 40 pF/m and an inductance o
nrough a coaxial cable, which has a capac 1m long cable is given by,	itance of 40 pF/m and an inductance o
= 1, σ ₁ = 0 and medium 2 is a free space. I ensity H _i , will be,	f the electric field intensity $E_i = 3.0$
ced 'd' distance apart and the capacitor i capacitor is expressed as,	is filled with a material having dielectri
	Incident at an angle of θ _i =15° and it is pro = 1, σ ₁ = 0 and medium 2 is a free space. I ensity H _i , will be, ced 'd' distance apart and the capacitor capacitor is expressed as, www.FirstRanker.com

```
and Koom Gopparating in a free Space, the propagation constant of this wave will be,
                 fanker's choice
                                                   www.FirstRanker.com
                                                                                                www.FirstRanker.com
1. j 3.14 [Option ID = 16706]
2. j 5.53 [Option ID = 16707]
3. j 2.09 [Option ID = 16708]
4. j 10.8 [Option ID = 16709]
Correct Answer :-
• j 2.09 [Option ID = 16708]
15) A transmission line of characteristic impedance Z_0 terminated by a load R= (1/2)Z_0 as shown in Fig., is connected to a
matched source by a switch for a short time t to produce a pulse on the line.
              Z_0
                                  B
                        A
    V.
                                     Z_0/2
                        Z<sub>0</sub>
      ( N
If the propagation time along the line is T, where T > t, the values of the reflection coefficient at point A and point B are,
respectively
[Question ID = 4179]
1. 1, -1/3 [Option ID = 16710]
2. 1, -1 [Option ID = 16711]
3. 2, -1 [Option ID = 16712]
4. 1/2, -1/2 [Option ID = 16713]
Correct Answer :-
• 1, -1/3 [Option ID = 16710]
16) A \lambda /4 transformer is connected in between generator and load, which have impedence ratio Z<sub>L</sub> / Z<sub>G</sub> =0.16 and Z<sub>G</sub> =
50 \Omega. The characteristic impedance of a \lambda /4 transformer is
[Question ID = 4180]
1.8Ω
   [Option ID = 16714]
2. 20 Ω
   [Option ID = 16715]
3. 312 Ω
   [Option ID = 16716]
4. 25 Ω
   [Option ID = 16717]
Correct Answer :-
• 20 Ω
   [Option ID = 16715]
17) The input power needed to generate an output power of 3 W from an amplifier with a power gain of 30 dB is
[Ouestion ID = 4181]
1. 1 W [Option ID = 16718]
2. 100 mW [Option ID = 16719]
3. 1 mW [Option ID = 16720]
4. 3 mW [Option ID = 16721]
Correct Answer :-
• 3 mW [Option ID = 16721]
18) The VSWR of a coaxial line which has a reflection coefficient of 0.6e^{-j\angle 60^\circ}, is
[Question ID = 4182]
1. 4
   [Option ID = 16722]
2. 1
   [Option ID = 16723]
3. 1.6
                                                   www.FirstRanker.com
   [Option ID = 16724]
4. 2
```


[Option ID = 16747]

Ranker.com stranker's choice www.FirstRanker.com www.FirstRanker.com [Option ID = 16749] Correct Answer :-• 8π [Option ID = 16748] 25) The modulated microwave signal with 1 kHz square wave modulating signal is detected by [Question ID = 4189] 1. Tunable detector [Option ID = 16750] 2. VSWR meter [Option ID = 16751] 3. Spectrum analyzer [Option ID = 16752] 4. Slotted line [Option ID = 16753] Correct Answer :- Tunable detector [Option ID = 16750] 26) A parabolic dish has a gain of 40 dB at 3GHz. The diameter of this dish is [Question ID = 4190] 1. 4.08 m [Option ID = 16754] 2. 8.02 m [Option ID = 16755] 3. 3.04 m [Option ID = 16756] 4. 1.25 m [Option ID = 16757] Correct Answer :-• 4.08 m [Option ID = 16754] 27) A satellite operates with 12 GHz at a distance of 36000 km has effective isotropic radiated power (EIRP) of 20 dBW.The flux density at receiving antenna of each station is [Question ID = 4191] 1. 2.21 × 10⁻¹⁴ W/m² [Option ID = 16758] 2. 3.6 x 10^{-14} W/m² [Option ID = 16759] 3. 0.614 × 10⁻¹⁴ W/m² [Option ID = 16760] 4. $2.0 \times 10^{-14} \text{ W/m}^2$ [Option ID = 16761] Correct Answer :-• 0.614 × 10⁻¹⁴ W/m² [Option ID = 16760] 28) A broadside array operating at 100cm wavelength consist of 4 half-wave dipoles spaced 50cm apart. Each element carries radio frequency current In the same phase and of magnitude 0.5 A. The radiated power will be [Question ID = 4192] 1. $34\pi^2$ W [Option ID = 16762] 2. $16\pi^2$ W [Option ID = 16763] 3. $20\pi^2$ W [Option ID = 16764] 4. $50\pi^2$ W [Option ID = 16765] Correct Answer :-• 20π² W [Option ID = 16764] 29) Charge needed within a unit sphere centred at the origin for producing a potential field, V = - $6r^{5}/\epsilon_{0}$ for the distance r \leq 1 meter, is [Question ID = 4193] 1. 30 π Coulomb [Option ID = 16766] 2. 240 π Coulomb [Option ID = 16767] 3. 120 π Coulomb [Option ID = 16768] 4. 180 π Coulomb [Option ID = 16769] Correct Answer :- 120 π Coulomb [Option ID = 16768] www.FirstRanker.com

30) A material has conductivity of 10⁻² mho/m and a relative permittivity of 4. The frequency for which conduction current

 2. 180 MHz [Option ID = 16771] 3. 27 MHz [Option ID = 16772] 4. 45 MHz [Option ID = 16773] 	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :- • 45 MHz [Option ID = 16773]		
31) For a electricity short dipole of lengt efficiency is	th 80 cm operating at 30 MHz, the loss res	sistance (R_{loss}) is 1.5 Ω . Its radiation
[Question ID = 4195] 1. 92.4 %		
[Option ID = 16774] 2. 94.9 %		
[Option ID = 16775] 3. 102.5 %		
[Option ID = 16776] 4. 86.7 %		
[Option ID = 16777]		
Correct Answer :- • 94.9 %		
[Option ID = 16775]		
32) A Hertzien dipole of length λ /50 has	an efficiency of 6.5%. The total quality fa	actor for this dipole is
[Question ID = 4196] 1. 1		
[Option ID = 16778] 2. 0.20		
[Option ID = 16779] 3. 7		
[Option ID = 16780] 4. 5.5		
[Option ID = 16781]		
Correct Answer :- • 0.20		
[Option ID = 16779]		
33) The value of integral $\int_{0}^{\pi} sin^{3}\theta d\theta$ is gi	iven by	
[Question ID = 4197] 1. 8/3		
[Option ID = 16782] 2. 4/3		
[Option ID = 16783] 3. 1/2		
[Option ID = 16784] 4. 2/3		
[Option ID = 16785]		
Correct Answer :- • 4/3		
[Option ID = 16783]		
	π π π	and instant has well under af

<mark>፝</mark>፝፝፝፝stRanker.com onFjr⊑stander's choice www.FirstRanker.com www.FirstRanker.com 3. 2.725 [Option ID = 16788] 4. 5.725 [Option ID = 16789] Correct Answer :-• 4.712 [Option ID = 16786] 35) With the initial condition x(1) = 0.5 the solution of the differential equation, $t \frac{dx}{dt} + x = t$ is [Question ID = 4199] 1. $x = \frac{t}{2}$ [Option ID = 16790] 2. $x = t - \frac{1}{2}$ [Option ID = 16791] 3. $x = t^2 - \frac{1}{2}$ [Option ID = 16792] 4. $x = \frac{t^2}{2}$ [Option ID = 16793] Correct Answer :-• $x = \frac{t}{2}$ [Option ID = 16790] 36) The Newton - Raphson method is used to solve the equation $f(x) = x^3 - 5x^2 + 6x - 8 = 0$. Taking the initial guess as x = 15, the solution obtained at the end of the first iteration is [Question ID = 4200] 1. 2.2903 [Option ID = 16794] 2. 4.515 [Option ID = 16795] 3. 4.2903 [Option ID = 16796] 4. 2.515 [Option ID = 16797] Correct Answer :-• 4.2903 [Option ID = 16796] 37) The inverse Laplace transform of the function $\frac{s+3}{(s+1)(s+3)}$ is equal to [Question ID = 4201] 1. 2e^{-t} + e^{-3t} [Option ID = 16798] 2. e^{-t} + 2e^{-3t} [Option ID = 16799] 3. e^{-t} - 2e^{-3t} [Option ID = 16800] 4. 2e^{-t} - e^{-3t} [Option ID = 16801] www.FirstRanker.com Correct Answer :-• 2e^{-t} - e^{-3t}

[Question ID = 4202] 1. 4 MHz		
[Option ID = 16802] 2. 8 GHz		
[Option ID = 16803] 3. 4 GHz		
[Option ID = 16804] 4. 8 MHz		
8 MHz		
[Option ID = 16805]		
39) A message signal given by $mt = \left(\frac{1}{2}\right) co.$	$s\omega_1 t - \left(\frac{1}{2}\right) sin\omega_1 t$ is amplitude-modulated	with a carrier of frequency ω_c to generat
$s(t) = [1 + m(t)]cos\omega_c t.$	(2)	
What is the power efficiency achieved by thi	s modulation scheme?	
[Question ID = 4203]		
[Option ID = 16806] 2. 11.11%		
[Option ID = 16807] 3. 8.33%		
[Option ID = 16808] 4. 25%		
[Option ID = 16809]		
 Correct Answer :- 20% 		
[Option ID = 16806]		
 40) The number of quantization levels w [Question ID = 4204] 1. 1024 [Option ID = 16810] 2. 64 [Option ID = 16811] 3. 256 [Option ID = 16812] 4. 512 [Option ID = 16813] 	ith 8-bits required to reduce the quanti	zation noise by a factor of 4 would be
Correct Answer :- • 512 [Option ID = 16813]		
41) An ideal band - pass channel 500 Hz the rate of 4800 bits/s using 16 - QAM. Th frequency band is	 2000 Hz is deployed for communication of roll off factor of a pulse with a raised 	on. A modem is designed to transmit b cosine spectrum that utilizes the ent
[Question ID = 4205] 1. 0.20		
[Option ID = 16814] 2. 0.25		
[Option ID = 16815] 3. 0.30		
[Option ID = 16816] 4. 0.15		
[Option ID = 16817]		

	[Option	ID	=	16831]
3	0 8 V			

www.FirstRanker.com

Firstkanker.	com	
[Option ID = 16854]	www.FirstRanker.com	www.FirstRanker.com
52) The minimum value of $\left(x^2 + \frac{250}{x}\right)$		
[Question ID = 4216] 1. 45		
[Option ID = 16858] 2. 50		
[Option ID = 16859] 3. 25		
[Option ID = 16860] 4. 75		
[Option ID = 16861]		
Correct Answer :- • 75		
[Option ID = 16861]		
53) $\int \frac{e^x dx}{e^x - 1}$ is equal to		
[Question ID = 4217] 1. $\log(e^x + 1)$		
[Option ID = 16862] 2. $\log(1 - e^x)$		
[Option ID = 16863] 3. $\log(e^{-x} - 1)$		
[Option ID = 16864] 4. $\log(e^x - 1)$		
[Option ID = 16865]		
Correct Answer :- • log(e ^x − 1)		
[Option ID = 16865]		
 54) A box contains 5 black and 5 red ball replacement. The probability for balls bein [Question ID = 4218] 1. 2/9 [Option ID = 16866] 2. 2/5 [Option ID = 16867] 3. 1/2 [Option ID = 16868] 4. 1/7 [Option ID = 16869] 	ls.Two balls are randomly picked one after ng red is	r another from the box, without
Correct Answer :- • 2/9 [Option ID = 16866]		
55) The value of $\int_{0.2}^{2.2} x^2 e^x dx$ by using on	e-segment trapezoidal rule is most nearly	
[Question ID = 4219] 1. 11.672		
[Option ID = 16870] 2. 43.729		
[Option ID = 16871] 3. 24.119		
[Option ID = 16872] 4. 31.807		
[Option ID = 16873]		
Correct Answer :-	www.FirstPankor.com	
• 43.729	www.riisiKalikel.com	

[Question ID = 4220]	e www.FirstRanker.com	www.FirstRanker.com
[Option ID = 16874] 2. 14. 7		
[Option ID = 16875] 3. 8, 11		
[Option ID = 16876] 4. 16, 4 [Option ID = 16877]		
Correct Answer :-		
• 16, 4 [Option ID = 16877]		
57) A random process is defined b correlation function and mean of t	by X (t) = A where A is continous random variable he process are	e uniformly distributed on (0,2). The au
[Question ID = 4221] 1. 1/2 and 1/3		
[Option ID = 16878] 2. 1/3 and 3		
[Option ID = 16879] 3. 1/2 and 1		
[Option ID = 16880] 4. 8/3 and 2		
[Option ID = 16881]		
Correct Answer :- • 8/3 and 2		
[Option ID = 16881]		
$f_{X,Y}(x,y) = \begin{cases} \frac{1}{12} & 0 < x < 6 \text{ and} \\ 0 & e \end{cases}$	0 < y < 4 lse where	
The expected value of the function	on g(x, y) = $(XY)^2$ is	
[Question ID = 4222]		
[Option ID = 16882]		
[Option ID = 16883] 3. 48		
[Option ID = 16884] 4. 128		
[Option ID = 16885]		
Correct Answer :- • 128		
[Option ID = 16885]		
59) The radiation resistance of an	infinitesimal dipole of overall length l= λ /40 is	
[Question ID = 4223] 1. 2 Ω [Option ID = 16886] 2. 50 Ω [Option ID = 16887] 3. 0 402 [Option ID = 16887]		

[Question ID = 4224]	www.FirstRanker.com	www.FirstRanker.com
1. 150 samples per second		
[Option ID = 16890] 2. 300 samples per second		
[Option ID = 16891] 3. 250 samples per second		
[Option ID = 16892] 4. 200 samples per second		
[Option ID = 16893]		
Correct Answer :-		
• 250 samples per second		
[Option ID = 16892]		
61) In a PCM system, if the code wo by the factor.	rd length is increased from 6 to 10 bits, the sig	gnal to quantization noise ratio improve
[Question ID = 4225] 1. 512		
[Option ID = 16894] 2. 128		
[Option ID = 16895] 3. 64		
[Option ID = 16896] 4. 256		
[Option ID = 16897]		
Correct Answer :- • 256 [Option ID = 16897]		
62) In C language, what is the output of	f the following code	
int main ()		
F		
int $a = 1$ $b = 9$ c. c = $a == b$. printf("%i"	c):	
3	,-,,	
٢		
[Question ID = 4226] 1. 4		
[Option ID = 16898] 2. 0		
[Option ID = 16899] 3. 1		
[Option ID = 16900] 4. Error		
[Option ID = 16901]		
Correct Answer :- • 0		
[Option ID = 16899]		
63) In C language, what is the output of	of the following code	
int main ()		
{		

[Option ID = 16902]	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 16903]		
3. 3		
[Option ID = 16904] 4. 1		
[Option ID = 16905]		
Correct Answer :-		
[Option ID = 16905]		
 64) The decimal equivalent of here [Question ID = 4228] 1. 6793 [Option ID = 16906] 2. 6973 [Option ID = 16907] 3. 6379 [Option ID = 16908] 4. 6739 [Option ID = 16909] 	x number 1A53 is	
Correct Answer :- • 6739 [Option ID = 16909]		
	note and each channel is complet 2000 times (Each cample is represented by any
binary bits and contains an addition	nal bit for synchronization.The total bit rate for t	he TDM link is
[Question ID = 4229]		
1. 1280 K bits/sec		
[Option ID = 16910] 2. 1180 K bits/sec		
[Option ID = 16911] 3. 1280 M bits/sec		
[Option ID = 16912] 4. 1180 M bits/sec		
[Option ID = 16913]		
Correct Answer :- • 1280 K bits/sec		
[Option ID = 16910]		
66) The analog output voltage(V ₀) digital input is 011100 is	of 6-bit digital-to-analog converter(R-2R ladder	network) with V _{ref} as 7V, when the
[Question ID = 4230] 1. 4.65 V		
[Option ID = 16914] 2. 8 V		
[Option ID = 16915] 3. 7.75 V		
[Option ID = 16916] 4. 3.06 V		
[Option ID = 16917]		
Correct Answer :- • 3.06 V		
[Option ID = 16917]		
67) If a tuned collector oscillator frequency band of 600 to 1000 kH	in a radio receiver has a fixed inductance of 50 µ z, then the range of variable capacitor to be use	uH and has to be tuneable over the ed is

[Option ID = 16918] 2. 5000 pF to 760 pF

4. 3500 pF to 150 pF	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 16921]		
Correct Answer :-		
• 1410 pF to 507 pF		
[Option ID = 16920]		
 68) If current gain of a transistor in CE memitter current is 5mA are [Question ID = 4232] 1. 0.98 and 1.0 x 10⁻⁴ A [Option ID = 16922] 2. 0.99 and 2.5 x 10⁻⁴ A [Option ID = 16923] 3. 0.97 and 1.2 x 10⁻⁵ A [Option ID = 16924] 4. 0.90 and 1.5 x 10⁻⁴ A [Option ID = 16925] 	node is 48 then its common - base current	t gain and the base current when the
Correct Answer :- • 0.98 and 1.0 x 10 ⁻⁴ A [Option ID = 16922]		
 69) An N- channel JFET requires a series [Question ID = 4233] 1. 166 Ω [Option ID = 16926] 2. 18.2 Ω [Option ID = 16927] 3. 83.25 Ω [Option ID = 16928] 4. 333 Ω [Option ID = 16929] 	resistor R_s to self bias with I_{DSS} = -6V.The	value of this resistor is
Correct Answer :- • 333 Ω [Option ID = 16929]		
[Question ID = 4234] 1. Photo diode [Option ID = 16930] 2. PIN diode [Option ID = 16931] 3. Schottky diodes [Option ID = 16932] 4. Tunnel diode [Option ID = 16933]	,	
Correct Answer :- • PIN diode [Option ID = 16931]		
 71) The sensitivity of photo diode depending [Question ID = 4235] 1. Depletion region width and excess carrier lifetim 2. Excess carrier life time and forward bias curren 3. Forward bias current and light intensity [Option 4. Light intensity and depletion region width [Opti 	ds on ne [Option ID = 16934] t [Option ID = 16935] ID = 16936] on ID = 16937]	
Correct Answer :- • Light intensity and depletion region width [Opti	on ID = 16937]	
72) The directional derivative of $f(x,y,z)$ vector $\hat{a} = \hat{i} - \hat{k}$ is	$= x^2 + y^2 + z^2$ at the point (1,1,3) in the dire	ection of the
[Question ID = 4236] 1. 4 [Option ID = 16938]		
2. $-\frac{\tau}{\sqrt{2}}$		
[Option ID = 16939]		
3. $\frac{1}{\sqrt{2}}$		
[Option ID = 16940]		
-		

77) The solution of the ordinary differential equation $\frac{www.FirstRanker.com}{dx}$ = 0 for the boundary condition www.FirstRanker.com
dx
y = 7 at $x = 1$ is
[Question ID = 4241] 1. $38.04e^{-3x}$
[Option ID = 16958] 2. $76.05e^{-2x}$
[Option ID = 16959] ^{3.} $98.23e^{-\frac{x}{2}}$
[Option ID = 16960] 4. $19.02e^{-x}$
[Option ID = 16961]
Correct Answer :- • 19.02 e^{-x}
[Option ID = 16961]
78) Let $A = \begin{bmatrix} 4 & -0.1 \\ 0 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1/2 & \alpha \\ 0 & \beta \end{bmatrix}$ then $\alpha + \beta =$
[Question ID = 4242]
1. $-\frac{25}{40}$
[Option ID = 16962]
2. $\frac{21}{20}$
[Option ID = 16963]
3. $\frac{41}{40}$
۲۰ [Ontion ID = 16964]
4. $-\frac{7}{20}$
20
41
40
[Option ID = 16964]
 79) store data or information temporarily and pass it on as directed by the control unit [Question ID = 4243] 1. address [Option ID = 16966] 2. register [Option ID = 16967] 3. number [Option ID = 16968]
4. memory [Option ID = 16969]
Correct Answer :- • register [Option ID = 16967]
 80) Working of the WAN generally involves [Question ID = 4244] 1. ATM [Option ID = 16970] 2. frame delay [Option ID = 16971] 3. user agent [Option ID = 16972] 4. satellite [Option ID = 16973]
Correct Answer :-
• satellite [Option ID = 16973]
81) Positive AND gate is also a negative
[Question ID = 4245] www.FirstRanker.com 1. NOR gate [Option ID = 16974] www.FirstRanker.com 2. NAND gate [Option ID = 16975] 4027(1)

Ranker.com www.FirstRanker.com www.FirstRanker.com 82) What is the output of the following code? #include < iostream.h > void main () { int main; main = 100; count << main ++<< endl;</pre> } [Question ID = 4246] 1. Error : one cannot use main as identifier [Option ID = 16978] 2. 100 [Option ID = 16979] 3. 101 [Option ID = 16980] 4. None of these [Option ID = 16981] Correct Answer :-• 100 [Option ID = 16979] 83) What is the output of the following code? #include< iostream.h> Void main() { bool a = 10; $count \ll a \ll endl;$ } [Question ID = 4247] 1. error [Option ID = 16982] 2. false [Option ID = 16983] 3. 10 [Option ID = 16984] 4. 1 [Option ID = 16985] Correct Answer :-• 1 [Option ID = 16985] 84) A transmission line of characteristic impedance of 50 Ω is terminated by a load impedance of (100 - j50) Ω and is fed by a matched generator. The measured voltage amplitude at the load terminal is 100 V. The VSWR on the line is [Question ID = 4248] 1. 1.583 [Option ID = 16986] 2. 2.562 [Option ID = 16987] 3. 2.618 [Option ID = 16988] 4. 1.684 [Option ID = 16989] Correct Answer :www.FirstRanker.com • 2.618 [Option ID = 16988]

indicular (Option ID = 16990) o i co	.om	
 Polarized [Option ID = 16991] Parallel [Option ID = 16992] Matched [Option ID = 16993] 	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :- • Matched [Option ID = 16993]		
 86) The characteristics impedance of a q transformer is [Question ID = 4250] 1. 50 Ω [Option ID = 16994] 2. 125 Ω [Option ID = 16995] 3. 25 Ω [Option ID = 16996] 4. 150 Ω [Option ID = 16997] 	juarter wave line is 50 Ω and load impeda	nce of 20 Ω,the input impedance to thi
Correct Answer :- • 125 Ω [Option ID = 16995]		
 87) The minimum impedance of a transm [Question ID = 4251] 1. 19.86 Ω [Option ID = 16998] 2. 18.75 Ω [Option ID = 16999] 3. 16.34 [Option ID = 17000] 4. 14.44 Ω [Option ID = 17001] 	ission line is 75 Ω with SWR 4 is	
Correct Answer :- • 18.75 Ω [Option ID = 16999]		
 88) The power reflected in a transmission [Question ID = 4252] 1. 3.645 W [Option ID = 17002] 2. 4.563 W [Option ID = 17003] 3. 2.50 W [Option ID = 17004] 4. 5.368 W [Option ID = 17005] 	n line, when its reflection coefficient and	d input power are 0.45 and 18W
Correct Answer :- • 3.645 W [Option ID = 17002]		
89) Diffusion constants D_p , D_n and mobility	ty μ_P and μ_n and absolute temperature T	are related as
[Question ID = 4253] 1. $\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = \frac{T}{11600}$ 2. $\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = \frac{17006}{T}$		
[Option ID = 17007] 3. $\frac{D_p}{\mu_p} = \frac{\mu_n}{D_n} = \frac{T}{11600}$		
[Option ID = 17008] 4. $\frac{D_p}{\mu_p} = \frac{\mu_n}{D_n} = \frac{11600}{T}$ [Option ID = 17009]		
Correct Answer :- • $\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = \frac{T}{11600}$		
[Option ID = 17006]		
90) Hall coefficient K_H and charge densit	y $ ho$ are related as	
[Question ID = 4254] 1. $K_{H} = \rho$		

[Option ID = 17012]	www.FirstRanker.com	www.FirstRanker.com
$K_H = \frac{\rho}{4\pi}$		
1.5		
Lorrect Answer :-		
$K_H = -\frac{1}{\rho}$		
[Option ID = 17012]		
91) If E is energy level of electron ar	nd E _F is Fermi level, then	
[Question ID = 4255] 1. all quantum states with E less than E _F will b	be empty at T= 0	
[Option ID = 17014] 2. all quantum states with E higher than E _F wi	ll be occupied at T = 0	
[Option ID = 17015] 3. all quantum states with E less than E _F will b	e occupied at T = 0	
[Option ID = 17016] 4. none of these		
[Option ID = 17017]		
Correct Answer :-		
 all quantum states with E less than E_F will b 	e occupied at T = 0	
[Option ID = 17016]		
 I. 0 [Option ID = 17021] Correct Answer :- 0.25 [Option ID = 17019] 		
93) A silicon bar is doped with donor T = 300K is n_i = 1.5 x10 ¹⁰ /cm ³ .Assumin [Question ID = 4257] 1. n_0 =1.5 x 10 ¹⁶ /cm ³ and p_0 =1.5 x 10 ⁵ /cm [Op 2. n_0 =1.5 x 10 ¹⁰ /cm and P_0 =1.5 x 10 ¹⁵ /cm ³ [O 3. n_0 =2.25 x 10 ¹⁵ /cm ³ and p_0 = 1.5 x 10 ¹⁰ /cm ³ 4. n_0 =2.25 x 10 ¹⁵ /cm ³ and p_0 =1 x 10 ⁵ /cm ³ [Op	impurities N _D = 2.25 x10 ¹⁵ / cm ³ . Given the int ig complete impurity ionization, the equilibrium wition ID = 17022] ption ID = 17023] ¹ [Option ID = 17024] bition ID = 17025]	trinsic carrier concentration of silicon a m electron and hole concentrations are
Correct Answer :- • n ₀ =2.25 x 10 ¹⁵ /cm ³ and p ₀ =1 x 10 ⁵ /cm ³ [Op	ution ID = 17025]	
 94) Consider a Ge diode operating at [Question ID = 4258] 12.3 mV/°C [Option ID = 17026] 2 2.0 mV/°C [Option ID = 17027] 32.1 mV/°C [Option ID = 17028] 41.9 mV/°C [Option ID = 17029] 	27° C and just beyond the threshold voltage (of Ge, the value of dV/dT is
 94) Consider a Ge diode operating at [Question ID = 4258] 12.3 mV/°C [Option ID = 17026] 2 2.0 mV/°C [Option ID = 17027] 32.1 mV/°C [Option ID = 17028] 41.9 mV/°C [Option ID = 17029] Correct Answer :-	27° C and just beyond the threshold voltage (of Ge, the value of dV/dT is
 94) Consider a Ge diode operating at [Question ID = 4258] 12.3 mV/°C [Option ID = 17026] 2 2.0 mV/°C [Option ID = 17027] 32.1 mV/°C [Option ID = 17028] 41.9 mV/°C [Option ID = 17029] Correct Answer :- -2.3 mV/°C [Option ID = 17026] 	27° C and just beyond the threshold voltage (of Ge, the value of dV/dT is
 94) Consider a Ge diode operating at [Question ID = 4258] 12.3 mV/°C [Option ID = 17026] 2 2.0 mV/°C [Option ID = 17027] 32.1 mV/°C [Option ID = 17028] 41.9 mV/°C [Option ID = 17029] Correct Answer :- -2.3 mV/°C [Option ID = 17026] 95) The reverse saturation current of temperature.If the original temperature [Question ID = 4259] 72° C [Option ID = 17030] 	27° C and just beyond the threshold voltage of f a reverse - biased PN junction diode increase re was 40° C, What is the final temperature?	of Ge, the value of dV/dT is es 32 times due to rise in ambiant
 94) Consider a Ge diode operating at [Question ID = 4258] -2.3 mV/°C [Option ID = 17026] -2.0 mV/°C [Option ID = 17027] -2.1 mV/°C [Option ID = 17028] -1.9 mV/°C [Option ID = 17029] Correct Answer :- -2.3 mV/°C [Option ID = 17026] 95) The reverse saturation current of temperature.If the original temperature [Question ID = 4259] . 72° C [Option ID = 17030] . 45° C [Option ID = 17031] 	27° C and just beyond the threshold voltage of f a reverse - biased PN junction diode increase re was 40° C, What is the final temperature?	of Ge, the value of dV/dT is es 32 times due to rise in ambiant

90° C [Option ID = 17032]

The driving point admittance of the network www.FirstRanker.com

www.FirstRanker.com

[Question ID = 4264] 1. $\frac{1 + RCs}{R + Ls}$ [Option ID = 17050] 2. $\frac{1 + RCs + LCs^2}{R + Ls}$ [Option ID = 17051] 3. $\frac{s + RCs^2 + LC}{R + Ls + Cs^2}$ [Option ID = 17052] 4. $\frac{1 + LCs^2}{R + Ls}$ [Option ID = 17053]

Correct Answer :-

•	$1 + RCs + LCs^2$
	R + Ls

[Option ID = 17051]

www.FirstRanker.com