'stKanker.com

irstranker's choice in Physics FirstRanker.com

www.FirstRanker.com

Topic:- PHY PHD S2

 A small mass m with a charge q is attached to a spring of spring- constant k and allowed to oscillate with amplitude A. Assuming that the amplitude of the oscillations and the speed of the mass is small, the time averaged power radiated by the system in Gaussian units is

[Question ID = 1426] 1. $q^2 k^2 A^2$ 3c3m2 [Option ID = 5698] 2. q2k2A2 $3c^4m^2$ [Option ID = 5699] 3. 2q2k2A2 $3c^3m^2$ [Option ID = 5700] 4. None of these [Option ID = 5701] Correct Answer : $q^2 k^2 A^2$. $3c^3m^2$ [Option ID = 5698] A sphere of radius a made of a material of dielectric constant € has a uniform charge density (p). Assuming V(∞) = 0, the potential V(0) at the center of the sphere is [Question ID = 1427] 1. $V(0) = \frac{\rho a^2}{6\epsilon_0 \epsilon_r} (2\epsilon_r + 1)$ [Option ID = 5702] $^{2} V(0) = 0$ [Option ID = 5703] $3. V(0) = \frac{\rho a^2}{4\pi\epsilon_0} (2\epsilon_r + 1)$ [Option ID = 5704] $4\pi a^2 \rho$ $^{4.}V(0) = -$ 3ener [Option ID = 5705] Correct Answer :-• $V(0) = \frac{\rho a^2}{6\epsilon_0 \epsilon_r} (2\epsilon_r + 1)$ [Option ID = 5702] 3) In the planetary model of the hydrogen atom, the time taken for the electron of charge e and mass m in the first Bohr orbit $(\alpha_{\sigma} = \frac{\hbar^2}{me^2})$ to spiral into the nucleus is given by [Question ID = 1428] $m^2 c^3 a_0^3$ www.FirstRanker.com

4e4

EirstRanker.com www.FirstRanker.com www.FirstRanker.com [Option ID = 5707] $m^2 c^3 a_0^3$ 2he4 [Option ID = 5708] 4. None of these [Option ID = 5709] Correct Answer : $m^2 c^3 a_0^3$ $4e^4$ [Option ID = 5706] A particle of mass m and charge q is accelerated from rest in a uniform electric field E = E x for a time t. Assuming relativistic motion, the speed of the particle at time t is given by [Question ID = 1429] qEct $\sqrt{(qEt)^2 + (mc)^2}$ [Option ID = 5710] 31.00 $\frac{qE}{m}t$ [Option ID = 5711] gEct 2 $2\sqrt{(qEt)^2 + (mc)^2}$ [Option ID = 5712] qEct2

$$\sqrt[4]{(qEt)^2 + (mc)^2}$$

[Option ID = 5713]

Correct Answer :-

$$\frac{q_E ct}{\sqrt{(qEt)^2 + (mc)^2}}$$

[Option ID = 5710]

5) A circular air filled parallel plate capacitor of radius R and separation d has an electric field E(t) which varies as $\frac{\partial E}{\partial t}$. Ignoring edge effects, the magnitude of the magnetic field is given by

[Question ID = 1430] 1. $B = \frac{R}{2c} \frac{\partial E}{\partial t}$ [Option ID = 5714] 2. $B = \frac{R^2}{2cd} \frac{\partial E}{\partial t}$ [Option ID = 5715] 3. $B = \frac{d^2}{Rc} \frac{\partial E}{\partial t}$ [Option ID = 5716] 4. $B = \frac{R^2}{2d} \frac{\partial E}{\partial t}$ [Option ID = 5717]

• $B = \frac{R}{2c} \frac{\partial E}{\partial t}$ [Option ID = 5714]

www.FirstRanker.com

Sterrance For the property of an isotropic 3-dimensional harmonic oscillator with the batinstranker's choice www.FirstRanker.com www.FirstRanker.com [Question ID = 1431] 1.0 [Option ID = 5718] ħ 2. 22 [Option ID = 5719] 3. 00 [Option ID = 5720] 4. 1 λ^2 [Option ID = 5721] Correct Answer :- 0 [Option ID = 5718] 7) Consider a particle of mass m constrained in the segment -a < x < a and subject to the repulsive potential $V(x) = \lambda \delta(x), \lambda > 0$. Consider V (x) as a perturbation and calculate the 1st order correction $\Delta E_0^{(1)}$ and $\Delta E_1^{(1)}$ to the energies of the ground and first excited states [Question ID = 1432] 1. $\Delta E_0^{(1)} = \frac{\lambda}{2}$ and $\Delta E_1^{(1)} = 0$ [Option ID = 5722] ²· $\Delta E_0^{(1)} = 0$ and $\Delta E_1^{(1)} = \frac{\hbar^2 \pi^2}{8ma^2}$ [Option ID = 5723] 3. $\Delta E_0^{(1)} = \frac{\lambda}{a}$ and $\Delta E_1^{(1)} = \frac{\lambda}{a}$ [Option ID - 5724] 4. $\Delta E_0^{(1)} = \frac{\hbar^2 \pi^2}{8ma^2}$ and $\Delta E_1^{(1)} = \frac{\lambda}{a}$ [Option ID = 5725] Correct Answer :-• $\Delta E_0^{(1)} = \frac{\lambda}{2}$ and $\Delta E_1^{(1)} = 0$ [Option ID = 5722] If the scattering amplitude f(θ) = 4 sin(θ) + i5 cos(θ), the total cross-section σ_T is [Question ID = 1433] 20π 1. k [Option ID = 5726] 5 2. k^2 [Option ID = 5727] 4 3 k^2 [Option ID = 5728] 4.0 [Option ID = 5729] Correct Answer :- 20π www.FirstRanker.com k

irstRanker.com

d first and a post of the first exited state |1 > for a time-dependent perturbation $H(t) = xe^{-t}$, $t = www.FirstRanker.com and <math>\tau \to 0$. www.FirstRanker.com [Question ID = 1434] 1.0 [Option ID = 5730] 1 2. $2m\hbar\omega^3$ [Option ID = 5731] 3 1 [Option ID = 5732] 4. 00 [Option ID = 5733] Correct Answer :- 0 [Option ID = 5730] 10) The angle between two (hkl) planes corresponding to (100) and (110) is [Question ID = 1435] 1. 45 [Option ID = 5734] 2. 60 [Option ID = 5735] 3. 30 [Option ID = 5736] 4.15 [Option ID = 5737] Correct Answer :- 45 [Option ID = 5734] 11) The Madelung constant of a one dimensional crystal consisting of alternate positive and negative ions with interatomic distance R is given by the expression a = 2 ln2. The Madelung constant for a divalent ion can be expressed as: [Question ID = 1436] 1. α = 8 ln2 [Option ID = 5738] 2. α = 4 ln2 [Option ID = 5739] α = ln2 [Option ID = 5740] 4. 0 [Option ID = 5741] Correct Answer :- α = 8 ln2 [Option ID = 5738] 12) The total scattering amplitude of reflection from (h,k,l) plane is given by the expression $F(h,k,l) = \sum_{j} e^{2\pi i (u_j h + v_j k + w_j l)}$. Where (u_j, v_j, w_j) represent the coordinates of the jth atom. The allowed reflections for (h,k,l) values for a FCC structure are [Question ID = 1437] 1. all odd or all even [Option ID = 5742] 2. all odd [Option ID = 5743] 3. all even [Option ID = 5744] 4. zero [Option ID = 5745] Correct Answer :www.FirstRanker.com all odd or all even [Option ID = 5742]

Concomparison of atoms with lattice spacing 'a'. Each atom is erters to the standard of the $aV_0\delta(x)$. the energy gaps between the bands in the nearly free electron approximation www.FirstRanker.com www.FirstRanker.com [Question ID = 1438] 1. 2V₀ [Option ID = 5746] 2. Vo [Option ID = 5747] 3. V₀/2 [Option ID = 5748] 4. Vo [Option ID = 5749] Correct Answer :- 2V₀ [Option ID = 5746] 14) If an AC current of frequency 1 GHz is observed through a Josephson junction, then the applied dc voltage is, (Given h = 6.625 x 10 -34) [Question ID = 1439] 2.07 µV [Option ID = 5750] 2. 3.8 μV [Option ID = 5751] 3. 1 µV [Option ID = 5752] 4. 5.48 μV [Option ID = 5753] Correct Answer :- 2.07 µV [Option ID = 5750] 15) Suppose that Newton's theory of gravitation is modified for short range. In this modified theory the potential energy between two masses m1 and m2 are given by, $V(r) = -\frac{Gm_1m_2}{(1 - ae^{-r/\lambda})}$ Where a is a constant and other symbols have their usual physical significance. For short distances $r \ll \lambda$ calculate the force between m1 and m2. [Question ID = 1440] 1. $F = -Gm_1m_2(1-a)/r$ [Option ID = 5754] 2. $F = -Gm_1m_2 a/\lambda r$ [Option ID = 5755] 3. $F = -Gm_1m_2(1+a)/r^2$ [Option ID = 5756] 4. $F = -Gm_1m_2 a/r^2$ [Option ID = 5757] Correct Answer :-• $F = -Gm_1m_2(1-a)/r^2$ [Option ID = 5754] 16) A statistical system is composed of two ultra-relativistic particles moving in a segment of length L. The Hamiltonian of the system is given by, $H(p_1, p_2) = c(|p_1| + |p_2|)$ Where, p1 and p2 are the momenta of the particles and c is the speed of light in vacuum. The volume of phase space enclosed by the surface of constant energy E is given by,

[Question ID = 1441]

1. $\Sigma(E, L) = \frac{2E^{4}L^{2}}{c^{2}}$

www.FirstRanker.com

Firstranker's choice	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 5759] 3. $\Sigma(E, L) = \frac{2EL^2}{r^2}$		
$\sum_{L(L,L)} = \frac{1}{e^2}$		
(Onting 10 - \$760)		
[Option ID = 5760] 4. $\Sigma(E, L) = 2E^2L^2$		
[Option ID = 5761]		
Correct Answer :-		
• $\Sigma(E, L) = \frac{2E^2L^2}{c^2}$		
2(0, 2) = 2		
[Option ID = 5758]		
[option 10 = 3736]		
2	able particles distributed in two energy level	
them N+ and N-, respectively in equilibrium $E = -N\varepsilon \tanh(\frac{\varepsilon}{2\pi\pi})$, where kB is the Boltzma	n. The ensemble is isolated and has a fixed e	nergy E at temperature T given by,
υ = - We durin (_{kgT}), where x b is the boltzma	in consum.	
If $\varepsilon = k_B \ln 2$, find out the temperature at which is the temperature of the second	hich $N_{+}/N_{-} = 1/2$.	
[Given, $\tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$]		
[Question ID = 1442]		
1. +2K		
[Option ID = 5762] 22K		
[Option ID = 5763]		
3. +1K		
[Option ID = 5764]		
44K		
[Option ID = 5765]		
Correct Answer :-		
• +2K		
[Option ID = 5762]		
18) Primary advantage of a crystal oscilla	ator is that	
[Question ID = 1443]	N/43	
 it can oscillate at any frequency [Option ID = 57 2. it gives a high output voltage [Option ID = 576] 		
 its frequency of oscillation remains almost const 4. it gives a constant a d.c. output voltage [Option 		
	nne - aren	
Correct Answer :- its frequency of oscillation remains almost const	stant [Option ID = 5768]	
19) In the spectrum of a frequency-mod	lulated wave -	
[Question ID = 1444] 1. the carrier frequency disappears when the mod	ulation-index is large [Option ID = 5770]	
2. the amplitude of any sideband depends on the	modulation-index [Option ID = 5771]	
 the total number of sidebands depends on the r the carrier frequency cannot disappear [Option 		
Correct Answer :-	-	
 the amplitude of any sideband depends on the i 	modulation-index [Option ID = 5771]	
20) The largest value of output voltage f 00110010 is	from an 8-bit digital-to-analog converter t	nat produces 1.0 V for a digital inpu
[Question ID = 1445]		
1. 5.1 V [Option ID = 5774]		
2. 10.2 V [Option ID = 5775]		
 20.4 V [Option ID = 5776] 		

	kefesed(09icAD = 5778) decreased [Option ID = 5779] WWV	w.FirstRanker.com	www.FirstRanker.com
3. Can work with both p	ositive and negative gate bias [Option I		
Initially the channel b	etween drain and source is completely b	locked by a p-region [Option ID = 5	5781]
Correct Answer :-			
 Initially the channel b 	etween drain and source is completely b	locked by a p-region [Option ID = !	5781]
22) If an inverter is	placed between the inputs of ar	n S-R Flip-Flop, the resulting	Flip-Flop is a
[Question ID = 1447			
 D-Flip Flop [Option ID J-K Flip Flop [Option 	-		
 Master Slave Flip Flop 	-		
 Remains a S-R Flip-Fl 	op [Option ID = 5785]		
Correct Answer :-			
D-Flip Flop [Option ID	= 5782]		
23) The Carnot eng	ines X and Y are operating in ser	ies. The first engine X recei	ves heat at 1200 K and rejects to a
			X, and thereafter re-ejects to a heat
	Calculate the temperature (in Ke	Ivin) for the situation, when	the work output of the two engines is
equal. [Question ID = 1448	1		
1. 750 K [Option ID = 57	86]		
 600 K [Option ID = 57 0 K [Option ID = 5788 	-		
 4. 450 K [Option ID = 57 			
Correct Answer :-			
 750 K [Option ID = 57 	86]		
[Question ID = 1449	ure T. Now the system has partition		internal energy will be:
[Question ID = 1449 1. $U = \frac{e}{e RT + 1}$ [Option ID - 5790]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT + 1}$			internal energy will be:
[Question ID = 1449 1. $U = \frac{e}{e RT + 1}$ [Option ID = 5790] 2. $U = \frac{2e}{\frac{2e}{e RT + 1}}$ [Option ID = 5791]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{\epsilon RT + 1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{\frac{2\epsilon}{e RT + 1}}$			internal energy will be:
[Question ID = 1449 1. $U = \frac{e}{e RT + 1}$ [Option ID = 5790] 2. $U = \frac{2e}{\frac{2e}{e RT + 1}}$ [Option ID = 5791]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e kT+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e kT}$ [Option ID = 5792]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e kT+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e kT}$ [Option ID = 5792]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT + 1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e kT + 1}$ [Option ID = 5791] 3. $U = \frac{kT}{e kT + 1}$			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{\frac{\epsilon}{KT}+1}}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e^{\frac{2\epsilon}{KT}+1}}$ [Option ID = 5791] 3. $U = \frac{kT}{\frac{\epsilon}{e^{\frac{\epsilon}{KT}}+1}}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{\frac{2\epsilon}{e^{\frac{2\epsilon}{KT}}+1}}$			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{kT}+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e^{kT}+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e^{kT}+1}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{e^{kT}+1}$ [Option ID = 5793]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{KT}+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e^{KT}+1}$ [Option ID = 5791] 3. $U = \frac{kT}{\frac{\epsilon}{e^{KT}+1}}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{\frac{2\epsilon}{e^{KT}+1}}$ [Option ID = 5793] Correct Answer :-			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{kT}+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e^{kT}+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e^{kT}+1}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{e^{kT}+1}$ [Option ID = 5793]			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e kT+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ [Option ID = 5793] Correct Answer :-			Internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{KT}+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e^{KT}+1}$ [Option ID = 5791] 3. $U = \frac{kT}{\frac{\epsilon}{e^{KT}+1}}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{\frac{2\epsilon}{e^{KT}+1}}$ [Option ID = 5793] Correct Answer :- • $U = \frac{\epsilon}{e^{KT}+1}$			internal energy will be:
[Question ID = 1449 1. $U = \frac{\epsilon}{e kT+1}$ [Option ID = 5790] 2. $U = \frac{2\epsilon}{e kT+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ [Option ID = 5792] 4. $U = \frac{\epsilon kT}{e kT}$ 4. $U = \frac{\epsilon kT}{e kT}$ [Option ID = 5793] Correct Answer :-			internal energy will be:
[Question ID = 1449 1. $U = \frac{e}{e^{kT}+1}$ [Option ID = 5790] 2. $U = \frac{2e}{e^{kT}+1}$ [Option ID = 5791] 3. $U = \frac{kT}{e^{kT}+1}$ [Option ID = 5792] 4. $U = \frac{ekT}{e^{kT}+1}$ [Option ID = 5792] 4. $U = \frac{ekT}{e^{kT}+1}$ [Option ID = 5793] Correct Answer :- • $U = \frac{e}{e^{kT}+1}$ [Option ID = 5790] 25) 1 Kg of water at	273 K is brought in contact with a	heat reservoir at 373 K. Now a	fter the transfer of heat to the heat reser
[Question ID = 1449 1. $U = \frac{\epsilon}{e^{kT}+1}$ [Option ID - 5790] 2. $U = \frac{2\epsilon}{e^{kT}+1}$ [Option ID - 5791] 3. $U = \frac{kT}{e^{kT}+1}$ [Option ID - 5792] 4. $U = \frac{\epsilon kT}{e^{kT}+1}$ [Option ID - 5793] Correct Answer :- • $U = \frac{\epsilon}{e^{kT}+1}$ [Option ID - 5793] Correct Answer :- • $U = \frac{\epsilon}{e^{kT}+1}$ [Option ID - 5793] Correct Answer :-		heat reservoir at 373 K. Now a	fter the transfer of heat to the heat reser

FirstRanker.com

Firstranker's choice www.FirstRanker.com www.FirstRanker.com 10³ × 2.303 log₁₀ (³⁷³/₂₇₃) cal/K [Option ID = 5795] 373 10³ × log₁₀(^{3/3}/₂₇₃) cal/K [Option ID = 5796] 4. None of these [Option ID = 5797] Correct Answer :- 10³ × 2.303 log₁₀ (³⁷³/₂₇₃) cal/K [Option ID = 5795] 26) Roughing vacuum range is [Question ID = 1451] 1. 10-7 - 10-5 mbar [Option ID = 5798] 2. 10⁻¹¹ - 10⁻⁹ mbar [Option ID = 5799] 10⁻³ - 10⁻¹ mbar ex. C [Option ID = 5800] 4- 103 - 101 mbar [Option ID = 5801] Correct Answer :- 10⁻³ - 10⁻¹ mbar [Option ID = 5800] 27) Pirani gauge works in pressure range of [Question ID = 1452] 1. 105 - 101 Torr [Option ID = 5802] 2. 10-4 - 10-1 Torr [Option ID = 5803] 3. 10-8 - 10-4 Torr [Option ID = 5804] 4. 10-12 - 10-3 Torr [Option ID = 5805] Correct Answer :- 10⁻⁴ - 10⁻¹ Torr [Option ID = 5803] 28) 3 Isospin (I) of elementary particle Ω- is [Question ID = 1453] $1.\frac{1}{2}$ [Option ID = 5806] 2. [Option ID = 5807] 3.1 (Option ID - 5808) 4.0 www.FirstRanker.com [Option ID = 5809]

	www.FirstRanker.com www.FirstRanker.com
 Which one of the [Question ID = 1454] 	following particle has a strangeness quantum number 1 ?
 π⁺ [Option ID = 5810] 	
 Λ⁰ [Option ID = 5811] K⁺ [Option ID = 5812] 	
4. Ω [•] [Option ID = 5813]	
• K ⁺ [Option ID = 5812]	
 Hypercharge (Y) o 	of elementary particle K ⁺ is
[Question ID = 1455]	
1. 0	
[Option ID = 5814] 2. +1	
[Option ID = 5815]	
31	
[Option ID = 5816] 42	
[Option ID = 5817]	
Correct Answer :-	
• +1	
[Option ID = 5815]	
[Question ID = 1456] 1. uus	
[Option ID = 5818] 2. uds	
[Option ID = 5819]	
3. sds	
[Option ID = 5820] 4. sus	
[Option ID = 5821]	
Correct Answer :-	
• uus	
[Option ID = 5818]	
32) Total number of d	own quarks in 7_3Li are
[Question ID = 1457] 1. 9	
[Option ID = 5822] 2. 10	
[Option ID = 5823]	
3. 11	
[Option ID = 5824]	
4. 12	

33) If the probability that a problem will be sowwww.FirstRankerscom1/3 and 1/6, then what is the probability that the problem will be solved?

l is the identity mate	rix and _A = (
tv(u r) B	rix and $A = ($	
tv(u r) B	rix and _A = (
tv(u r) B	rix and _A = (
tv(u r) B	rix and _A = (
tv(u r) B	rix and A = (
tv(u r) B	rix and $A = ($	
tv(u r) B	rix and _A = (
	, co	
	ç	
	ç	
	çó	
	, co	
the closed contour	z - 2i = 4 is	
	the closed contour	the closed contour $ z - 2i = 4$ is

FirstRanker.co	om	Electronic and
[Option ID = 5838]	www.FirstRanker.com	www.FirstRanker.com
37) The Fourier transform of $f(x) = \begin{cases} 0, x \\ e^{-ax}, x \end{cases}$	≤ 0 > 0 is	

```
[Question ID = 1462]
1. _____
    2\pi is + a
    [Option ID = 5842]
2. \frac{1}{2\pi i s + 2a}
   [Option ID = 5843]
3. _____
    2\pi is - a
    [Option ID = 5844]
4. None of these
    [Option ID = 5845]
 Correct Answer :-
 . 1
    2\pi is + a
    [Option ID = 5842]
 38) Given the operator \hat{\vec{j}} = \hat{j}_k \hat{\mathbf{i}} + \hat{j}_y \hat{j} + \hat{j}_k \hat{k}, where the commutator [\hat{j}_j, \hat{j}_k] = t \sum_{l=1}^3 \epsilon_{jkl} \hat{j}_l, as well as two constant vector \vec{u} and \vec{v},
 then the commutator \left[\vec{u}, \vec{j}, \vec{v}, \vec{f}\right] is equal to,
 [Question ID = 1463]
<sup>1.</sup> i(\vec{u} \times \vec{v}). \vec{j}
    [Option ID = 5846]
<sup>2.</sup> i\left(\sum_{k=1}^{3} u_k v_k \hat{f}_k\right)
[Option ID = 5847]
3. i \sum_{k=1}^{3} u_k v_k \hat{J}_k
[Option ID = 5848]
4. i \sum_{k=1}^{3} u_k v_k \hat{f}. \hat{f}
    [Option ID = 5849]
 Correct Answer :-
 • i(u × v). ]
    [Option ID = 5846]
 39) For -1 \le x \le +1, the series \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} is equal to:
 [Question ID = 1464]
1. tan^{-1}x
    [Option ID = 5850]
     xexpx
2
        π
                                                                         www.FirstRanker.com
    [Option ID = 5851]
3 \sin^2 x
```

FirstRanker.com

[Option ID = 5853]	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :-		
• tan ⁻¹ x		
[Option ID = 5850]		
40) The integral, $\int_{-\infty}^{+\infty} \frac{d(\delta(y))}{dy} \sin y dy$ is equal	ıl to,	
[Question ID = 1465] 11		
[Option ID = 5854] 2. cosy		
[Option ID = 5855] 3. +1		
[Option ID = 5856] 4. π		
[Option ID = 5857]		
Correct Answer :- • -1		
[Option ID = 5854]		
41) The solution of the differential equation	n, $(1 + x^2)\frac{df}{dx} + xf(x) = 0$ is given by, A	being an arbitrary constant,
[Question ID = 1466] 1. $A(x^2 + 1)^{-1/2}$		
[Option ID = 5858] 2. $\ln(A(x^2 + 1))$		
[Option ID = 5859] 3. $\ln \left(A(x^2 + 1)^{-1/2}\right)$		
[Option ID = 5860] 4. $\cos(A(x^2 + 1))$		
[Option ID = 5861]		
Correct Answer :- • $A(x^2+1)^{-1/2}$		
[Option ID = 5858]		
42) If $\nabla \times \vec{F}(\vec{r}) \neq 0$ but $\nabla \times \left(g(\vec{r})\vec{F}(\vec{r})\right) = 0$ th	en,	
[Question ID = 1467] 1. $\vec{F}(\vec{r}).(\nabla \times \vec{F}(\vec{r})) = 0$		
[Option ID = 5862] 2. $\nabla \times (\nabla \times \vec{F}(\vec{r})) = 0$		
[Option ID = 5863] 3. $\nabla . \vec{F}(\vec{r}) = 0$		
[Option ID = 5864] 4. $\nabla g(\vec{r}). (\nabla \times \vec{F}(\vec{r})) = 0$		
[Option ID = 5865]		
Correct Answer :- • $\vec{F}(\vec{r}).(\nabla \times \vec{F}(\vec{r})) = 0$		
[Option ID = 5862]	www.FirstRanker.com	
43) $\frac{d(\delta(y))}{dy}$ equals to:		

www.FirstRanker.com www.FirstRanker.com www.FirstRanker.com www.FirstRanker.com $\frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{2\pi} dx$ [Option D = 560] $\frac{1}{\pi} \int_{-\pi}^{+\pi} \frac{1}{2\pi} dx$ [Option D = 560] Correct Answers: $\frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{2\pi} e^{-\pi x^2} e^{-\pi x^2} dx$ [Option D = 560] 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph $\frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{2\pi} e^{-\pi x^2} e^{-\pi x^2} dx$ [Option D = 560] 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph $\frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{2\pi} \sum_{\pi} \frac{1}{2\pi} e^{-\pi x^2} e^{-\pi x^2} dx$ [Option D = 560] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Option D = 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Option D = 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Option D = 5870] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x,p) = qp + \beta x$, where q and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Option D = 5878] 2. Arrange line with a pattere tope [Option D = 5878] 2. Arrange line with a pattere tope [Option D = 5878] 3. A pathola	FirstRanker.c	om	
$2z \int_{-\infty}^{\infty} \frac{dz}{dz} \int_{-\infty}^{\infty} \frac{dz}{dz}$ $\begin{bmatrix} [Option D - 5566] \\ z \int_{-\infty}^{\infty} \frac{dz}{dz} \frac{dz}{dz} \\ [Option D - 5566] \\ z \int_{-\infty}^{\infty} \frac{dz}{dz} \frac{dz}{dz} \\ [Option D - 5566] \\ \end{bmatrix}$ $\frac{1}{2z} \int_{-\infty}^{\infty} \frac{dz}{dz} \frac{dz}{dz} \\ [Option D - 5566] \\ \end{bmatrix}$ $(Option D - 5566) \\ (Option D - 5566) \\ \end{bmatrix}$ $(4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph \\ \hline \frac{1}{2z} \int_{-\infty}^{\infty} \frac{dz}{dz} \frac{dz}{dz} \\ [Option D - 5566] \\ (Option D - 5566) \\ (Option D - 5566) \\ (Option D - 5566) \\ \hline \frac{1}{2z} \int_{-\infty}^{\infty} \frac{dz}{dz} \\ [Option D - 5570] \\ (Dption D - 5570) \\ 2 T_{A} > T_{B} > T_{C} \\ [Option D - 5570] \\ 2 T_{A} > T_{B} > T_{C} \\ [Option D - 5577] \\ (Option D - 5577] \\ (Option D - 5577] \\ (Option D - 5577) \\ (Option D - 5578) \\ (Option D - 5577) \\ (Option D - 5578) \\ (Option D - 5578)$	1 I I I I I I I I I I I I I I I I I I I	www.FirstRanker.com	www.FirstRanker.com
$\frac{2}{2} \int_{-\infty}^{\infty} \frac{4\pi^2}{\pi^2} dx$ $\frac{10}{2} \left[\frac{10}{2} \tan \theta - 5867 \right] \frac{1}{2\pi} \int_{-\infty}^{\infty} x^{10/2} dx$ $\frac{10}{2\pi} \int_{-\infty}^{\infty} x^{10/2} dx$ $\frac{10}{2\pi} \int_{-\infty}^{\infty} x^{10/2} dx$ $\frac{10}{2\pi} \int_{-\infty}^{\infty} x^{10/2} dx$ $\frac{10}{2} \int_{-\infty}^{\infty} x^{10/2} dx$	2π J		
$1: \frac{1}{4} \int_{-\infty}^{\infty} x^{407} dt$ $\frac{[\text{(ption D - 5868]}}{\frac{1}{28} \int_{-\infty}^{\infty} x^{407} dt}$ $\frac{[\text{(ption D - 5869]}}{[\text{(ption D - 5869]}}$ $4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 4.4 T_{12} = T_{12} + T_{12}$	C ^{+m} airy		
4. $\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2\pi} \frac{1}{$	[Option ID = 5867] 3. $\frac{1}{\pi} \int_{-\infty}^{+\infty} x e^{ixy} dx$		
Correct Answer : • $\frac{1}{2\pi} \int_{-\infty}^{\infty} x^{6/2} dx$ (Option 10 - 5866) 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph • $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}$			
• $\frac{1}{2\pi} \int_{-\infty}^{\infty} x^{1/2} dx$ [Option D = 5866] 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph a for the entropy S of a thermodynamic system as a function of energy E is given by the following graph b for the entropy S of a thermodynamic system as a function of energy E is given by the following graph b for the entropy S of a thermodynamic system as a function of energy E is given by the following graph b for the entropy S of a thermodynamic system as a function of energy E is given by the following graph f for T _x = T _x = T _x = T _x = T _y = T_y = T _y = T _y = T _y = T _y = T_y = T _y = T _y = T _y = T _y = T_y = T	[Option ID = 5869]		
 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 44) The entropy S of a thermodynamic system as a function of energy E is given by the following graph 47) T_A, T_B and T_C are the temperatures for the phases A, B, and C respectively, then [Question ID = 1469] 17, T_A > T_C > T_A 17, T_A > T_A > T_A 10 potion ID = 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. Stoops rs [Option ID = 5873] 2. A straight line with a positive signe 10 An eligne [Question ID = 1471] 1. A neiligne [Question ID = 1878] 2. A straight line with a positive signe [Question ID = 1878] 2. A straight line with a positive signe [Question ID = 1879] 3. A parabola 	, ##00		
Fra, T _a and T _c are the temperatures for the phases A, B, and C respectively, then [Question ID = 1469] 1. $T_{\beta} > T_{c} > T_{A}$ [Option ID - 5870] 2. $T_{A} > T_{p} > T_{c}$ [Option ID - 5871] 3. $T_{c} > T_{A} > T_{p}$ [Option ID - 5871] Correct Answer :: • $T_{p} > T_{c} > T_{A}$ [Option ID - 5873] Correct Answer :: • $T_{p} > T_{c} > T_{A}$ [Option ID - 5873] Correct Answer :: • $T_{p} > T_{c} > T_{A}$ [Option ID - 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9000 yn: [Option ID - 5873] 2. 0000 yn: [Option ID - 5873] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 5878] 2. A straight line with a posithe slope [Option ID = 5878] 2. A straight line with a posithe slope [Option ID = 5878] 3. A parabola WWW.FirstRanker.com	[Option ID = 5866]		
[Question D = 1469] 1. $T_B > T_c > T_A$ [Option D = 5870] 2. $T_A > T_B > T_C$ [Option D = 5871] 3. $T_c > T_A > T_B$ [Option D = 5872] 4. $T_c > T_B > T_A$ [Option D = 5873] Correct Answer :- • $T_B > T_C > T_A$ [Option D = 5873] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5873] 2. 4800 yrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5878] 3. A parabola WWW.FirstRanker.com	44) The entropy S of a thermodynamic sys	stem as a function of energy E is given b	by the following graph
[Question D = 1469] 1. $T_B > T_c > T_A$ [Option D = 5870] 2. $T_A > T_B > T_C$ [Option D = 5871] 3. $T_c > T_A > T_B$ [Option D = 5872] 4. $T_c > T_B > T_A$ [Option D = 5873] Correct Answer :- • $T_B > T_C > T_A$ [Option D = 5873] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5873] 2. 4800 yrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5878] 3. A parabola WWW.FirstRanker.com	5 A B		
[Question D = 1469] 1. $T_B > T_c > T_A$ [Option D = 5870] 2. $T_A > T_B > T_C$ [Option D = 5871] 3. $T_c > T_A > T_B$ [Option D = 5872] 4. $T_c > T_B > T_A$ [Option D = 5873] Correct Answer :- • $T_B > T_C > T_A$ [Option D = 5873] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5873] 2. 4800 yrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5878] 3. A parabola WWW.FirstRanker.com	1 DE		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	[Question ID = 1469]	the phases A, B, and C respectively, the	en
2. $T_A > T_B > T_c$ [Option ID - 5871] 3. $T_c > T_A > T_B$ [Option ID - 5872] 4. $T_c > T_B > T_A$ [Option ID - 5873] Correct Answer :- • $T_B > T_c > T_A$ [Option ID - 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5873] 2. 8000 yrs [Option ID - 5873] 3. 7200 yrs [Option ID - 5873] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numbres respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID - 5878] 2. A straight line with a positive slope [Option ID - 5879] 3. A parabola WWW.FirstRanker.com			
3. $\overline{T}_c > T_A > T_B$ [Option ID - 5872] 4. $T_c > T_B > T_A$ [Option ID - 5873] Correct Answer :- • $T_B > T_c > T_A$ [Option ID - 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5874] 2. 4800 wrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5876] 4. 8000 yrs [Option ID - 5877] Correct Answer :- • 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola WWW.FirstRanker.com			
4. $T_c > T_B > T_A$ [Option ID - 5873] Correct Answer : • $T_B > T_c > T_A$ [Option ID - 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 900 yrs [Option ID - 5874] 2. 4000 yrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID - 5878] 2. A straight line with a positive slope [Option ID - 5879] 3. A parabola WWW.FirstRanker.com	3. $T_C > T_A > T_B$		
Correct Answer :- • $T_B > T_C > T_A$ [Option ID - 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID - 5874] 2. 4800 yrs [Option ID - 5875] 3. 7200 yrs [Option ID - 5875] 4. 8000 yrs [Option ID - 5877] Correct Answer :- • 8000 yrs [Option ID - 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = ap + \beta x$, where α and β are positive real numbres respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola WWW.FirstRanker.com	4. $T_C > T_B > T_A$		
 T_B > T_c > T_k [Option ID = 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID = 5874] 2. 48000 yrs [Option ID = 5876] 4. 8000 yrs [Option ID = 5877] Correct Answer :- 8. 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be H(x, p) = ap + βx , where α and β are positive real numb respectively. The phase space trajectory in the position -momentum (x - p) plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola 	[Option ID = 5873]		
[Option ID = 5870] 45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID = 5874] 2. 4800 yrs [Option ID = 5875] 3. 7200 yrs [Option ID = 5877] Correct Answer :- • 80000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola WWW.FirstRanker.com			
45) If the half-life of radium is about 1600 years, then for a given ball of pure radium weighing 4 gm now, what would the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID = 5874] 2. 4800 yrs [Option ID = 5875] 3. 7200 yrs [Option ID = 5877] Correct Answer :- • 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola WWW.FirstRanker.com			
the amount of time required to have only 0.125 gm of radium to be left, [Question ID = 1470] 1. 9600 yrs [Option ID = 5874] 2. 4800 yrs [Option ID = 5875] 3. 7200 yrs [Option ID = 5877] Correct Answer :- • 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real numb respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com	[Option ID = 5870]		
 2. 4800 yrs [Option ID = 5875] 3. 7200 yrs [Option ID = 5876] 4. 8000 yrs [Option ID = 5877] Correct Answer :- 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be H(x, p) = ap + βx, where α and β are positive real number respectively. The phase space trajectory in the position -momentum (x - p) plane is given by, [Question ID = 1471] An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola 	the amount of time required to have only [Question ID = 1470]		dium weighing 4 gm now, what would t
Correct Answer :- • 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be $H(x, p) = \alpha p + \beta x$, where α and β are positive real number respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com	 4800 yrs [Option ID = 5875] 7200 yrs [Option ID = 5876] 		
 8000 yrs [Option ID = 5877] 46) The Hamiltonian for a 1-dimensional system is given to be H(x, p) = ap + βx , where α and β are positive real number respectively. The phase space trajectory in the position -momentum (x - p) plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com 			
respectively. The phase space trajectory in the position -momentum $(x - p)$ plane is given by, [Question ID = 1471] 1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com			
1. An ellipse [Option ID = 5878] 2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com			
2. A straight line with a positive slope [Option ID = 5879] 3. A parabola www.FirstRanker.com			
3. A parabola www.FirstRanker.com			
		FI	
		www.FirstRanker.com	

Firstranker's choice

-	Firstranker's choice
	Correct Answer :- www.FirstRanker.com www.FirstRanker.com
	[Option ID = 5881]
	47) The Lagrangian for a system is given by $L = \alpha e^{-bt} \dot{x}^2 - e^{-bt} \beta x$, where α and β are positive real numbers. The constant b is also a positive real number. The equation of motion that follows from this Lagrangian is
	$\begin{bmatrix} \text{Question ID} = 1472 \end{bmatrix}$ $\frac{1}{2\alpha \ddot{x} - b\dot{x}} + \beta e^{-bt} = 0$
	[Option ID = 5882] 2- $e^{-bt}(\alpha \ddot{x} - 2b\dot{x}) + \beta = 0$
	[Option ID = 5883] 3. $\alpha(\dot{x} + b\dot{x}) + \beta = 0$
	[Option ID = 5884] 4. $2\alpha(\hat{x} - b\hat{x}) + \beta = 0$
	[Option ID = 5885]
	Correct Answer :- • $2\alpha(\ddot{x} - b\dot{x}) + \beta = 0$
	[Option ID = 5885]
	48) The Hamiltonian of a system is given by, $H = ap^3 + bp + x^2$
	where a and b are positive constants. The corresponding Lagrangian is [Question ID = 1473] 1. $\pm \frac{2}{\sqrt{3\pi}} (\dot{x} - b)^2 - x^2$
	[Option ID = 5886] 2. $\frac{2}{3\sqrt{3\pi}} (\hat{x} - bx)^{3/2} - x^{2}$
	[Option ID = 5887] $3 \pm (\hat{x} - b)^{3/2} \pm x^{2}$
	[Option ID = 5888] 4. $\pm \frac{2}{3\sqrt{3a}} (\dot{x} - b)^{3/2} - x^2$
	[Option ID = 5889]
	Correct Answer :- • $\pm \frac{2}{3\sqrt{3a}} (\dot{x} - b)^{3/2} - x^2$
	[Option ID = 5889]
-	49) Consider the transformation,
	$q \rightarrow Q = \alpha_1 q + \beta_1 p$
	$p ightarrow P = \alpha_2 q + \beta_2 p$,
	where, α_1 , α_2 , β_1 , and β_2 are real constants. This transformation is:
	[Question ID = 1474] 1. Always canonical as it is a linear transformation.
	[Option ID = 5890] 2. Never a canonical transformation since it is linear.
	[Option ID = 5891] ^{3.} A canonical transformation if $\beta_1 = 1$ and , $\alpha_2 = 1$ while $\alpha_1 = 0$ and $\beta_2 = 0$.
	[Option ID = 5892] 4. A canonical transformation if $\alpha_1 \beta_2 = \beta_1 \alpha_2 = 1$
-	[Option ID = 5893] www.FirstRanker.com

Correct Answer :-

Eirstränke	r's choice www.FirstRanker	.com www.FirstRanker.com
50) A free-particle m	wing in 1-dimension is described by the wavefur	
$\psi(x,t)\left[Ae^{\frac{ipx}{\hbar}}+Be^{\frac{-ipx}{\hbar}}\right]e^{-ipx}$	-(p)0 2003 -	
which of the following		
[Question ID = 1475] 1. $\psi(x, t)$ is an eigenstate	of the momentum operator	
	or the momentum operator	
[Option ID = 5894] 2. $\psi(x, t)$ is not a solution	of the Schrodinger equation, but is an eigenstate of the Ha	miltonian.
[Option ID = 5895]		
1 6444	of the momentum operator as well as an eigenstate of the	Hamiltonian.
[Option ID = 5896] 4. ψ(x, t) is a solution of t	e Schlrodinger equation and is an eigenstate of the Hamilt	tonian.
[Option ID = 5897]		
Correct Answer :-		
	e Schlrodinger equation and is an eigenstate of the Hamilt	tonian.
[Option ID = 5897]		
		all
	AL LON	
	S ann	
	ST St	
	19	
	N.F.II.S	
	the tranker	

[Option ID = 5897]

