Topic:- MATHS MA S2

- 1) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $x_n \leq y_n$ for all $n \geq N$, where N is some positive integer. Consider the following statements:
- (a) $\lim_{n \to \infty} \inf x_n \le \lim_{n \to \infty} \inf y_n$
- (b) $\lim_{n\to\infty} \sup x_n \le \lim_{n\to\infty} \sup y_n$

Which of the above statements is(are) correct?

[Question ID = 5742]

- 1. Neither (a) nor (b)
 - [Option ID = 22962]
- 2. Only (a)
 - [Option ID = 22963]
- 3. Only (b)
 - [Option ID = 22964]
- 4. Both (a) and (b)
 - [Option ID = 22965]

Correct Answer :-

- Both (a) and (b)
 - [Option ID = 22965]
- 2) Which of the sequences $\{a_n\}$ and $\{b_n\}$ of real numbers with n-th terms

$$a_n = \frac{(n^2 + 20n + 35)\sin n^3}{n^2 + n + 1}$$

$$b_n = 2\cos n - \sin n$$

has(have) convergent subsequences?

[Question ID = 5743]

- 1. Neither $\{a_n\}$ nor $\{b_n\}$
 - [Option ID = 22966]
- 2. Only $\{a_n\}$
 - [Option ID = 22967]
- 3. Only $\{b_n\}$
 - [Option ID = 22968]
- 4. Both $\{a_n\}$ and $\{b_n\}$
 - [Option ID = 22969]

- Both $\{a_n\}$ and $\{b_n\}$
 - [Option ID = 22969]
- 3) Consider the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, $x \in \mathbb{R}$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n + \sin n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{n}}$$

$$\frac{1}{(d)\sum_{n=1}^{\infty}\sin n}$$

www.FirstRanker.com

[Option ID = 22970] 2. Only (a), (c) and (d)

[Option ID = 22971]

3. Only (a) and (c)

[Option ID = 22972]

4. Only (c)

[Option ID = 22973]

Correct Answer :-

• Only (a) and (c)

[Option ID = 22972]

4) The union of infinitely many closed subsets of the real line is

[Question ID = 5745]

- 1. uncountable [Option ID = 22974]
- 2. finite [Option ID = 22975]
- 3. always closed [Option ID = 22976]
- 4. need not be closed [Option ID = 22977]

Correct Answer :-

• need not be closed [Option ID = 22977]

Consider the series
$$\sum_{n=1}^{\infty} a_n$$
 where $a_n = \left(2 + \sin \frac{n\pi}{2}\right) r^n$, $r > 0$. What are the values of $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n}$ and $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$?

[Question ID = 5746]

- 1. r/2 and 2r [Option ID = 22978]
- 2. r/3 and r [Option ID = 22979]
- 3. 2r/3 and 3r/2 [Option ID = 22980]
- 4. 0 and 1 [Option ID = 22981]

Correct Answer :-

• r/2 and 2r [Option ID = 22978]

6) Consider the following series:

(a)
$$\sum_{n=1}^{\infty} 3^{-n} \sin 3^n x \text{ on } \mathbb{R}$$

(b)
$$\sum_{n=1}^{\infty} 2^{-n} x^n$$
 on $(-2,2)$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$$
 on \mathbb{R}

Which of the above series converge uniformly on the indicated domain?

[Question ID = 5747]

- 1. Only (a) and (b)
 - [Option ID = 22982]
- 2. Only (b) and (c)
 - [Option ID = 22983]
- 3. Only (a) and (c)
 - [Option ID = 22984]
- 4. All of (a), (b) and (c)

[Option ID = 22985]

Correct Answer :-

• Only (a) and (c)

[Option ID = 22984]

7) Let $\{f_n\}$ be a sequence of continuous functions on [a,b] converging uniformly to the function f. Consider the following statements: **www.FirstRanker.com**

(a) f is bounded on [a, b]

ch ch

clFirs differentiable, then intersequence $\{f'\}$ converges uniformly to f' on [a,b], f' is the derivative of f www.FirstRanker.com

Which of the following statements is(are) correct?

[Question ID = 5748]

- 1. Only (a) and (b)
 - [Option ID = 22986]
- 2. Only (a) and (c)
 - [Option ID = 22987]
- 3. Only (c)
- [Option ID = 22988]
- 4. Only (b)
 - [Option ID = 22989]

Correct Answer :-

- Only (a) and (b)
 - [Option ID = 22986]
- Let G(x) be a real-valued function defined by $G(x) = \int_{x^2}^{4x^2} \cos \sqrt{t} dt$. If G' is the derivative of G, then

[Question ID = 5749]

- 1. $G'(\pi/2) = -4\pi$
 - [Option ID = 22990]
- 2. $G'(\pi/2) = -4\pi 1$
 - [Option ID = 22991]
- 3. $G'(\pi/2) = -\pi$
 - [Option ID = 22992]
- 4. $G'(\pi/2) = 0$
 - [Option ID = 22993]

Correct Answer :-

- $G'(\pi/2) = -4\pi$
 - [Option ID = 22990]

9) Let
$$f(x) = \begin{cases} (4 - x^2)^{5/2}, & |x| < 2\\ 0, & |x| \ge 2 \end{cases}$$

Consider the following statements:

- a. f is not continuous on \mathbb{R}
- b. f is continuous on \mathbb{R} but not differentiable at x = 2, -2
- c. f is differentiable on \mathbb{R} but f' is not continuous on \mathbb{R}
- d. f is differentiable on \mathbb{R} and f' is continuous on \mathbb{R}

Which of the above statements is(are) correct?

[Question ID = 5750]

- 1. Only (a) and (d)
 - [Option ID = 22994]
- 2. Only (b) and (c)
 - [Option ID = 22995]
- 3. Only (c)
 - [Option ID = 22996]
- 4. Only (d)
 - [Option ID = 22997]

- Only (d)
 - [Option ID = 22997]

Correct Answer :-Infinitely many solutions

he general Million of the equation y" + ywww.firstRanker.com

[Question ID = 5755]

- 1. $c_1 \cos x + c_2 \sin x x \cos x + \sin x \ln(\sin x)$
 - [Option ID = 23014]
- 2. $c_1 \cos x + c_2 \sin x + x \cos x + \sin x \ln(\sin x)$
 - [Option ID = 23015]
- 3. $c_1 \cos x + c_2 \sin x x \sin x + \cos x \ln(\sin x)$
 - [Option ID = 23016]
- 4. $c_1 \cos x + c_2 \sin x + x \sin x + \cos x \ln(\sin x)$
 - [Option ID = 23017]

Correct Answer :-

- $c_1 \cos x + c_2 \sin x x \cos x + \sin x \ln(\sin x)$
 - [Option ID = 23014]
- 15) The particular integral of the differential equation is $y'' + y = x^3$ is

[Question ID = 5756]

- 1. $x^2 + 6x$
 - [Option ID = 23018]
- 2. $x^2 6x$
- [Option ID = 23019]
- 3. $x^3 + 6x$
 - [Option ID = 23020]
- 4. $x^3 6x$
 - [Option ID = 23021]

Correct Answer :-

- $x^3 6x$
 - [Option ID = 23021]
- 16) The complete integral of the partial differential equation $p^2z^2+q^2=1$, where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$ is

(a, b are arbitrary constants)

[Question ID = 5757]

1.
$$z + a^2 \ln \left(\frac{z + \sqrt{z^2 + a^2}}{a} \right) = 0$$

- [Option ID = 23022]
- 2. $a^2z + by + x^2 = 0$
 - [Option ID = 23023]

3.
$$z\sqrt{z^2 + a^2} + a^2 \ln\left(\frac{z + \sqrt{z^2 + a^2}}{a}\right) = 2x + 2ay + 2b$$

- [Option ID = 23024]
- 4. $z^2 + y^2 = x^2 + 2x + 2ay + 2b$
 - [Option ID = 23025]

- $z\sqrt{z^2 + a^2} + a^2 \ln\left(\frac{z + \sqrt{z^2 + a^2}}{a}\right) = 2x + 2ay + 2b$
 - [Option ID = 23024]
- 17) The complete integral of the partial differential equation $z = px + qy \sin(pq)$ where

$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$$
 is

www.FirstRanker.com

[Option ID = 23027]

$$3. \ z = ax + y + \sin b$$

4.
$$z = x + by - \sin a$$

Correct Answer :-

• $z = ax + by - \sin(ab)$

18) The partial differential equation $yu_{xx} + 2xyu_{xy} + xu_{yy} = u_x + u_y$ is

[Question ID = 5759]

1. Hyperbolic in
$$\{(x,y)|0 < xy < 1\}$$

2. Hyperbolic in $\{(x,y)|xy>1\}$

3. Elliptic in $\{(x,y)|xy>1\}$

4. Elliptic in $\{(x,y)|xy<0\}$

[Option ID = 23033]

Correct Answer :-

• Hyperbolic in $\{(x,y)|xy>1\}$

[Option ID = 23031]

19) The general solution of the equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = x - y$ is

[Question ID = 5760]

1.
$$\frac{1}{4}x(x-y)^2 + \emptyset_1(x^2+y) + \emptyset_2(x-y)$$

[Option ID = 23034]

2.
$$\frac{1}{4}x(x-y)^2 + \emptyset_1(x+y) + \emptyset_2(x-y)$$

[Option ID = 23035]

3.
$$\emptyset_1(x+y) + \emptyset_2(x^2-y)$$

[Option ID = 23036]

4.
$$\emptyset_1(x^2+y) + \emptyset_2(x^2-y) - \frac{1}{4}x(x+y)$$

[Option ID = 23037]

Correct Answer :-

•
$$\frac{1}{4}x(x-y)^2 + \emptyset_1(x+y) + \emptyset_2(x-y)$$

[Option ID = 23035]

20) The general solution of $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with u(0,t) = u(2,t) = 0, $u(x,0) = \sin^3 \frac{\pi x}{2}$ and $u_t(x,0) = 0$ is

[Question ID = 5761]

1.
$$\frac{3}{4}\sin\frac{\pi x}{2}\sin\frac{\pi ct}{2}$$

[Option ID = 23038]
2.
$$\frac{3}{4} \sin \frac{\pi x}{2} \cos \frac{\pi ct}{2} - \frac{1}{4} \sin \frac{3\pi x}{2} \cos \frac{3\pi ct}{2}$$

$$3 - \frac{3}{4} \frac{\pi x}{\cos \frac{\pi x}{2}} \frac{\pi ct}{\sin \frac{\pi}{2}} - \frac{1}{4} \sin \frac{3\pi x}{2} \sin \frac{3\pi ct}{2}$$

[Option ID = 23040] 4. $\frac{3}{4} \sin \frac{\pi x}{2} \cos \frac{\pi ct}{2} - \frac{1}{4} \cos \frac{3\pi x}{2}$

www.FirstRanker.com

 $\frac{3}{4}\sin\frac{\pi x}{2}\cos\frac{\pi cc}{2}$

21) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} (x^2 + y^2) \ln(x^2 + y^2), & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$$

Then,

[Question ID = 5762]

1. f_{xy} and f_{yx} are continuous at (0, 0), and $f_{xy}(0,0) = f_{yx}(0,0)$

[Option ID = 23042]

2. f_{xy} and f_{yx} are discontinuous at (0, 0), but $f_{xy}(0,0) = f_{yx}(0,0)$

[Option ID = 23043]

3. f_{xy} and f_{yx} are continuous at (0, 0), but $f_{xy}(0,0) \neq f_{yx}(0,0)$

[Option ID = 23044]

4. f_{xy} and f_{yx} are discontinuous at (0, 0) and $f_{xy}(0,0) \neq f_{yx}(0,0)$

[Option ID = 23045]

Correct Answer :-

• f_{xy} and f_{yx} are discontinuous at (0, 0), but $f_{xy}(0,0) = f_{yx}(0,0)$

[Option ID = 23043]

22) The directional derivative of $f(x,y,z) = xy^2 + yz^2 + zx^2$ defined on \mathbb{R}^3 along the tangent to the curve $x = t, y = t^2, z = t^3$ at the point (1,1,1) is

[Question ID = 5763]

1.
$$-\frac{18}{\sqrt{14}}$$

[Option ID = 23046]

2. $\frac{13}{\sqrt{14}}$

[Option ID = 23047]

3. $-\frac{13}{\sqrt{14}}$

[Option ID = 23048]

4. $\frac{18}{\sqrt{14}}$

[Option ID = 23049]

Correct Answer :-

• $\frac{18}{\sqrt{14}}$

[Option ID = 23049]

23) The unique polynomial of degree 2 passing through (1, 1), (3, 27) and (4, 64) obtained by Lagrange interpolation is [Question ID = 5764]

1.
$$8x^2 - 17x + 12$$

2.
$$8x^2 - 19x - 12$$

3.
$$8x^2 + 14x - 12$$

4.
$$8x^2 - 19x + 12$$

[Option ID = 23055]

3. 0.7625

[Option ID = 23056]

4. 0.6702

[Option ID = 23057]

Correct Answer :-

• 0.8512

[Option ID = 23054]

25) Consider the differential equation, $\frac{dy}{dx} = y - x$, y(0) = 2. The absolute value of the difference in the solutions obtained by Euler method and Runge-Kutta second order method at y(0.1) using step size 0.1 is

[Question ID = 5766]

- 1. 2.205 [Option ID = 23058]
- 2. 2.252 [Option ID = 23059]
- 3. 0.005 [Option ID = 23060]
- 4. 0.055 [Option ID = 23061]

Correct Answer :-

• 0.005 [Option ID = 23060]

26) The approximate value of $(17)^{1/3}$ obtained after two iterations of Newton-Raphson method starting with initial approximation $x_0 = 2$ is

[Question ID = 5767]

1. 2.7566

[Option ID = 23062]

2. 2.5826

[Option ID = 23063]

3. 2.6713

[Option ID = 23064]

4. 2.4566

[Option ID = 23065]

Correct Answer:

• 2.5826

[Option ID = 23063]

27) For an infinite discrete metric space (X,d), which of the following statements is correct?

[Question ID = 5768]

1. X is compact

[Option ID = 23066]

2. For every $A \subseteq X$, $A^o \cup \bar{A} = X$, where \bar{A} and A^o denote respectively the closure and interior of A in X

[Option ID = 23067]

3. χ is connected

[Option ID = 23068]

4. X is not totally bounded

[Option ID = 23069]

www.FirstRanker.com

Correct Answer :-

 \bullet χ is not totally bounded

Firstranker's choice

 $^{28)}$ Consider the metric space (l_2,d) of squarwww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ is the Ewww. $oldsymbol{ iny}$ in the Ewww. $oldsymbol{ iny}$ is the Ewww.ol

 $Y = \{e_1, e_2, ...\} \subseteq l_2$ where e_i is the sequence of 1 at the i - th place and 0 elsewhere. Then,

[Question ID = 5769]

1. v is not compact and has no limit point

[Option ID = 23070]

2. y is compact and each e_i is a limit point of y

[Option ID = 23071]

3. \mathbf{y} is not compact and has a limit point

[Option ID = 23072]

4. y is compact and has no limit point

[Option ID = 23073]

Correct Answer :-

• y is not compact and has no limit point

[Option ID = 23070]

29) Let C[0,1] be the set of real valued continuous functions on [0, 1] with sup-metric. Let $A = \{f \in C[0,1] | f(0) = 0\}$

and $B = \{ f \in C[0,1] | f(0) > 0 \}$ be the subspaces of C[0,1]. Then,

[Question ID = 5770]

1. Both A and B are complete

[Option ID = 23074]

2. A is complete but B is incomplete

[Option ID = 23075]

3. A is incomplete but B is complete

[Option ID = 23076]

4. Neither A nor B is complete

[Option ID = 23077]

Correct Answer :-

A is complete but B is incomplete

[Option ID = 23075]

30) Let (\mathbb{R},d) and (\mathbb{R},u) be the metric spaces with the discrete metric space d and usual metric u respectively.

Let $f:(\mathbb{R},d) \to (\mathbb{R},u)$ and $g:(\mathbb{R},u) \to (\mathbb{R},d)$ be the functions given by

$$f(x) = g(x) = \begin{cases} 0, & x \le 0 \\ x+1, & x > 0 \end{cases}$$

Then,

[Question ID = 5771]

Both f and g are continuous

[Option ID = 23078]

2. Neither f nor g is continuous

[Option ID = 23079]

 3 . f is continuous but g is not

[Option ID = 23080]

4. g is continuous but f is not

[Option ID = 23081]

Correct Answer :-

f is continuous but g is not

[Option ID = 23080]

www.FirstRanker.com

31) Let $Y_1 = \{(x,y) \in \mathbb{R}^2 | y = \sin \frac{1}{x}, 0 < x \le \pi \}$ and $Y_2 = \{(0,y) \in \mathbb{R}^2 | y \in [-2,2] \}$ be subspaces of the

www.FirstRanker.com

[Question ID = 5772]

1. $\overline{Y_1} \cup Y_2$ is connected

[Option ID = 23082]

2. $Y_1 \cup \overline{Y_2}$ is connected

[Option ID = 23083]

3. $\overline{Y_1} \cap Y_2$ is disconnected

[Option ID = 23084]

4. $\overline{Y_1 \cap Y_2}$ is a non-empty bounded subset of \mathbb{R}^2

[Option ID = 23085]

Correct Answer :-

• $\overline{Y_1} \cup Y_2$ is connected

[Option ID = 23082]

32) Let be the set of all real-valued Riemann integrable functions on and let be the function given by

$$f(x) = \begin{cases} 0, & if \ x = 0 \\ \frac{1}{n}, & if \ \frac{1}{n+1} < x \le \frac{1}{n} \ for \ n \in \mathbb{N} \end{cases}$$

Which of the following statements is correct?

[Question ID = 5773]

^{1.} f is monotonically decreasing on [0, 1] but $f \notin R[0, 1]$

[Option ID = 23086]

2. f is monotonically decreasing on [0,1] and $f \in R[0,1]$

[Option ID = 23087]

3. f is discontinuous at infinitely many points in [0,1] but $f \notin R[0,1]$

[Option ID = 23088]

^{4.} f is discontinuous at infinitely many points in [0, 1] and $f \in R[0,1]$

[Option ID = 23089]

Correct Answer :-

• f is discontinuous at infinitely many points in [0,1] and $f \in R[0,1]$

[Option ID = 23089]

33) The improper integral

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$$

[Question ID = 5774]

1. Converges to π

[Option ID = 23090]

2. Converges to $\pi/2$

[Option ID = 23091]

3. Converges to 0

[Option ID = 23092]

4. Diverges

[Option ID = 23093]

Correct Answer :-

• Converges to π

[Option ID = 23090]

34) Consider the functions $f(x) = \frac{x^2-1}{2}$ and $g(x) = \frac{|x^2-1|}{2}$, $x \neq 1$. Then

[Question ID = 5775]

www.FirstRanker.com

1. Both f and g have removable discontinuity at x = 1

www.FirstRanker.com

3. f has a removable discontinuity at x = 1, while g has a jump discontinuity at x = 1

[Option ID = 23096]

^{4.} f has a jump discontinuity at x = 1 while g has a removable discontinuity at x = 1

[Option ID = 23097]

Correct Answer :-

• f has a removable discontinuity at x = 1, while g has a jump discontinuity at x = 1

[Option ID = 23096]

35) What is the length of the interval on which the function $f(x) = x^3 - 6x^2 - 15x + 8$ is decreasing?

[Question ID = 5776]

1. 8

[Option ID = 23098]

2. 6

[Option ID = 23099]

3. 4

[Option ID = 23100]

4. 2

[Option ID = 23101]

Correct Answer :-

• 6

[Option ID = 23099]

36) Let $f: [a, b] \to \mathbb{R}$ be a monotonic function. Consider the following statements:

- a. The function f obeys the maximum principle
- b. The function f is Riemann integrable on [a, b]

Which of the above statement(s) is(are) true?

[Question ID = 5777]

1. Only (a)

[Option ID = 23102]

2. Only (b)

[Option ID = 23103]

3. Both (a) and (b)

[Option ID = 23104]

4. Neither (a) nor (b)

[Option ID = 23105]

Correct Answer :-

• Both (a) and (b)

[Option ID = 23104]

37) Consider the following:

a.
$$((a,b),(c,d)) = ac - bd,(a,b),(c,d) \in \mathbb{R}^2$$

b.
$$\langle f(x), g(x) \rangle = \int_0^1 f'(x)g(x) dx$$
, where $f(x)$, $g(x)$ are polynomials over \mathbb{R}

Which of the above is(are) an inner product?

[Question ID = 5778]

1. Neither (a) nor (b)

[Option ID = 23106]

2. Both (a) and (b)

[Option ID - 23107]

3. Only (a)

[Option ID = 23108]

www.FirstRanker.com

4. Only (b)

38) Let
$$T = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
. Then $T^3 + 4T^2 + 5T - 2I$ is equal to

[Question ID = 5779]

1. 10T + 4I

[Option ID = 23110]

2. 10T - 4I

[Option ID = 23111]

3. -10T + 4I

[Option ID = 23112]

4. -10T - 4I

[Option ID = 23113]

Correct Answer :-

• 10T - 4I

[Option ID = 23111]

39) Let V be an infinite dimensional vector space over a field F.

Consider the following statements:

- a. Any one-one linear transformation from $_{\slash\hspace{-0.4em}U}$ to itself is onto
- b. Any onto linear transformation from $\ensuremath{\emph{V}}$ to itself must be one-one

Which of the above statements is (are) correct?

[Question ID = 5780]

1. Both (a) and (b)

[Option ID = 23114]

2. Only (a)

[Option ID = 23115]

3. Only (b)

[Option ID = 23116]

4. Neither (a) nor (b)

[Option ID = 23117]

Correct Answer :-

• Neither (a) nor (b)

[Option ID = 23117]

40) Let $P_n(\mathbb{R})$ be the set of all polynomials over \mathbb{R} of degree at most p. Let $T: P_n(\mathbb{R}) \to P_{n+1}(\mathbb{R})$ be given by T(f(x)) = xf(x). Then

[Question ID = 5781]

1. $_{\it T}$ is one-one and onto linear transformation

[Option ID = 23118]

2. T is an onto function but neither a linear transformation nor one-one

[Option ID = 23119]

3. $_{\it T}$ is not onto but a one-one linear transformation

[Option ID = 23120]

4. T is one-one but neither a linear transformation nor onto

[Option ID = 23121]

Correct Answer:

ullet $_{\it T}$ is not onto but a one-one linear transformation

[Option ID = 23120]

www.FirstRanker.com

[Option ID = 23135]

www.FirstRanker.com

[Option ID = 23137]

Correct Answer :-

• G is a simple group

[Option ID = 23135]

45) Let G be a finite group of order 385. Let H, K and L be p-Sylow subgroups of G for p = 5, T and T1, respectively. Which of the following statements is incorrect?

[Question ID = 5786]

1. K is a normal subgroup of G

[Option ID = 23138]

2. L is normal subgroup of G

[Option ID = 23139]

3. HK is a non-abelian subgroup of G

[Option ID = 23140]

4. G = HKL

[Option ID = 23141]

Correct Answer :-

HK is a non-abelian subgroup of G

[Option ID = 23140]

46) The remainder when 2020²⁰²⁰ is divided by 12 is

[Question ID = 5787]

- 1. 0 [Option ID = 23142]
- 2. 2 [Option ID = 23143]
- 3. 4 [Option ID = 23144]
- 4. 8 [Option ID = 23145]

Correct Answer:-

• 4 [Option ID = 23144]

47) The smallest integer a > 2 such that 2|a, 3|(a+1), 4|(a+2), 5|(a+3) and 6|(a+4) is

[Question ID = 5788]

1. 14

[Option ID = 23146]

2. 56

[Option ID = 23147]

3. 122

[Option ID = 23148]

4. 62

[Option ID = 23149]

Correct Answer:-

• 62

[Option ID = 23149]

Let
$$R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}$$
 be a ring and $f: R \to \mathbb{Z}$ be given by $\emptyset \left(\begin{pmatrix} a & b \\ b & a \end{pmatrix} \right) = a - b$. Which of the following statements is

incorrect?

[Question ID = 5789]

1. $\mathbf{0}$ is a ring homomorphism

[Option ID = 23150]

2. $\ker \emptyset$ is a prime ideal but not maximal

[Option ID = 23151]
3. ker Ø is maximal ideal

www.FirstRanker.com

www.FirstRanker.com

Correct Answer :-

ker Ø is maximal ideal

[Option ID = 23152]

49) Consider the following statements

- a. A polynomial is irreducible over a field F if it has no zeros in F
- b. Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z}
- c. For any prime p, the polynomial $\chi^{p-1} + \chi^{p-2} + \dots + \chi + 1$ is irreducible over $\mathbb Q$

Which of the above statements is (are) correct?

[Question ID = 5790]

1. Only (a) and (b)

[Option ID = 23154]

2. Only (a) and (c)

[Option ID = 23155]

3. Only (b) and (c)

[Option ID = 23156]

4. All of (a), (b) and (c)

[Option ID = 23157]

Correct Answer :-

• Only (b) and (c)

[Option ID = 23156]

50) Which of the following is a Euclidean domain?

[Question ID = 5791]

1. $\mathbb{Q}[x]/(x^3-2)$

[Option ID = 23158]

2. $\mathbb{Z}[x]$

[Option ID = 23159]

3. $\mathbb{Q}[x,y]$

[Option ID = 23160]

4. None of these

[Option ID = 23161]

Correct Answer :-

• $\mathbb{Q}[x]/\langle x^3-2\rangle$

[Option ID = 23158]