Topic:- MATHS MA S2

1) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers such that $x_{n} \leq y_{n}$ for all $n \geq N$, where N is some positive integer. Consider the following statements:
(a) $\lim _{n \rightarrow \infty} \inf x_{n} \leq \lim _{n \rightarrow \infty} \inf y_{n}$
(b) $\lim _{n \rightarrow \infty} \sup x_{n} \leq \lim _{n \rightarrow \infty} \sup y_{n}$

Which of the above statements is(are) correct?
[Question ID = 5742]

1. Neither (a) nor (b)
[Option ID = 22962]
2. Only (a)
[Option ID = 22963]
3. Only (b)
[Option ID = 22964]
4. Both (a) and (b)
[Option ID = 22965]
Correct Answer :-

- Both (a) and (b)
[Option ID = 22965]

2) Which of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of real numbers with $n-t h$ terms
$a_{n}=\frac{\left(n^{2}+20 n+35\right) \sin n^{3}}{n^{2}+n+1}$,
$b_{n}=2 \cos n-\sin n$
has(have) convergent subsequences?
[Question ID = 5743]
1. Neither $\left\{a_{n}\right\}$ nor $\left\{b_{n}\right\}$
[Option ID = 22966]
2. Only $\left\{a_{n}\right\}$
[Option ID = 22967]
3. Only $\left\{b_{n}\right\}$
[Option ID = 22968]
4. Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$
[Option ID = 22969]
Correct Answer :-

- Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$
[Option ID $=22969$]

3) Consider the following series:
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n+\sin n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2^{n} \sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \sin n$
2. Only (a), (c) and (d)
[Option ID = 22971]
3. Only (a) and (c)
[Option ID = 22972]
4. Only (c)
[Option ID = 22973]

Correct Answer :-

- Only (a) and (c)
[Option ID = 22972]

4) The union of infinitely many closed subsets of the real line is
[Question ID = 5745]
1. uncountable [Option ID $=22974$]
2. finite [Option ID $=22975$]
3. always closed [Option ID $=22976$]
4. need not be closed [Option ID $=22977$]

Correct Answer :-

- need not be closed [Option ID = 22977]

5) Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\left(2+\sin \frac{n \pi}{2}\right) r^{n}, r>0$. What are the values of
$\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ and $\limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} ?$
[Question ID = 5746]
1. $r / 2$ and $2 r$ [Option $I D=22978$]
2. $r / 3$ and r [Option $I D=22979$]
3. $2 r / 3$ and $3 r / 2$ [Option ID $=22980$]
4. 0 and 1 [Option $\mathrm{ID}=22981$]

Correct Answer :-

- $r / 2$ and $2 r$ [Option ID $=22978$]

6) Consider the following series:
(a) $\sum_{n=1}^{\infty} 3^{-n} \sin 3^{n} x$ on \mathbb{R}
(b) $\sum_{n=1}^{\infty} 2^{-n} x^{n}$ on $(-2,2)$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n x$ on \mathbb{R}

Which of the above series converge uniformly on the indicated domain?
[Question ID = 5747]

1. Only (a) and (b)
[Option ID = 22982]
2. Only (b) and (c)
[Option ID = 22983]
3. Only (a) and (c)
[Option ID = 22984]
4. All of (a), (b) and (c)
[Option ID = 22985]
Correct Answer :-

- Only (a) and (c)
[Option ID = 22984]

7) Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on $[a b$ fanverging yniformly to the function f. Consider the following statements:

(a) f is bounded on $[a, b]$
ciF Kr^{\prime} is tiffand

Which of the following statements is(are) correct?
[Question ID = 5748]

1. Only (a) and (b)
[Option ID = 22986]
2. Only (a) and (c)
[Option ID = 22987]
3. Only (c)
[Option ID = 22988]
4. Only (b)
[Option ID = 22989]
Correct Answer :-

- Only (a) and (b)
[Option ID = 22986]

8) Let $G(x)$ be a real-valued function defined by $G(x)=\int_{x^{2}}^{4 x^{2}} \cos \sqrt{t} d t$. If G^{\prime} is the derivative of G, then
[Question ID = 5749]
1. $G^{\prime}(\pi / 2)=-4 \pi$
[Option ID = 22990]
2. $G^{\prime}(\pi / 2)=-4 \pi-1$
[Option ID = 22991]
3. $G^{\prime}(\pi / 2)=-\pi$
[Option ID = 22992]
4. $G^{\prime}(\pi / 2)=0$
[Option ID = 22993]
Correct Answer :-

- $G^{\prime}(\pi / 2)=-4 \pi$
[Option ID = 22990]

9) Let $f(x)= \begin{cases}\left(4-x^{2}\right)^{5 / 2}, & |x|<2 \\ 0, & |x| \geq 2\end{cases}$

Consider the following statements:
a. f is not continuous on \mathbb{R}
b. f is continuous on \mathbb{R} but not differentiable at $x=2,-2$
c. f is differentiable on $\mathbb{R}^{\text {but }} f^{\prime}$ is not continuous on \mathbb{R}
d. f is differentiable on \mathbb{R} and f^{\prime} is continuous on \mathbb{R}

Which of the above statements is(are) correct?
[Question ID = 5750]

1. Only (a) and (d)
[Option ID = 22994]
2. Only (b) and (c)
[Option ID = 22995]
3. Only (c)
[Option ID = 22996]
4. Only (d)
[Option ID = 22997]

Correct Answer :-

- Only (d)

```
    "FinstRa'inker:comdefined on mite on the inteval
[Option ID = 22998]
2. \([3,4]\)
[Option ID = 22999]
3. \([-2,-1]\)
[Option ID = 23000]
4. \([-5,-3]\)
[Option ID = 23001]
```


Correct Answer :-

- $[-2,-1]$
[Option ID = 23000]

11) The Wronskian of $\cos x, \sin x$ and e^{-x} at $x=0$ is
[Question ID = 5752]
1. 1
[Option ID = 23002]
2. 2
[Option ID = 23003]
3. -1
[Option ID = 23004]
4. -2
[Option ID = 23005]
Correct Answer :-

- 2
[Option ID = 23003]

12) The solution of the initial value problem $y^{\prime}=1+y^{2}, y(0)=1$, is:-
[Question ID = 5753]
1. $y=\operatorname{cosec}(x+\pi / 4)$
[Option ID = 23006]
2. $y=\tan (x+\pi / 4)$
[Option ID $=23007$]
3. $y=\sec (x+\pi / 4)$
[Option ID $=23008$]
4. $y=\cot (x+\pi / 4)$
[Option ID = 23009]

Correct Answer :-

- $y=\tan (x+\pi / 4)$
[Option ID = 23007]

13) How many solution(s) does the initial value problem $y^{\prime}-\frac{2}{x} y=0, y(0)=0$ have?
[Question ID = 5754]
1. No solution
[Option ID = 23010]
2. Unique solution
[Option ID = 23011]
3. Two solutions
[Option ID = 23012]
4. Infinitely many solutions
 constants)
[Question ID $=5755$]
5. $c_{1} \cos x+c_{2} \sin x-x \cos x+\sin x \ln (\sin x)$
[Option ID $=23014$]
6. $c_{1} \cos x+c_{2} \sin x+x \cos x+\sin x \ln (\sin x)$
[Option ID = 23015]
7. $c_{1} \cos x+c_{2} \sin x-x \sin x+\cos x \ln (\sin x)$
[Option ID $=23016$]
8. $c_{1} \cos x+c_{2} \sin x+x \sin x+\cos x \ln (\sin x)$
[Option ID = 23017]
Correct Answer :-

- $c_{1} \cos x+c_{2} \sin x-x \cos x+\sin x \ln (\sin x)$
[Option ID = 23014]

15) The particular integral of the differential equation is $y^{\prime \prime}+y=x^{3}$ is
[Question ID = 5756]
1. $x^{2}+6 x$
[Option ID = 23018]
2. $x^{2}-6 x$
[Option ID $=23019$]
3. $x^{3}+6 x$
[Option ID $=23020$]
4. $x^{3}-6 x$
[Option ID = 23021]
Correct Answer :-

- $x^{3}-6 x$
[Option ID = 23021]

16) The complete integral of the partial differential equation $p^{2} z^{2}+q^{2}=1$, where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$ is
(a, b are arbitrary constants)
[Question ID = 5757]
1. $z+a^{2} \ln \left(\frac{z+\sqrt{z^{2}+a^{2}}}{a}\right)=0$
[Option ID $=23022$]
2. $a^{2} z+b y+x^{2}=0$
[Option ID $=$ 23023]
3. $z \sqrt{z^{2}+a^{2}}+a^{2} \ln \left(\frac{z+\sqrt{z^{2}+a^{2}}}{a}\right)=2 x+2 a y+2 b$
[Option ID $=23024]$
4. $z^{2}+y^{2}=x^{2}+2 x+2 a y+2 b$
[Option ID = 23025]
Correct Answer :-

- $z \sqrt{z^{2}+a^{2}}+a^{2} \ln \left(\frac{z+\sqrt{z^{2}+a^{2}}}{a}\right)=2 x+2 a y+2 b$
[Option ID $=23024$]

17) The complete integral of the partial differential equation $z=p x+q y-\sin (p q)$ where

[Option ID = 23027]
3. $z=a x+y+\sin b$
[Option ID = 23028]
4. $z=x+b y-\sin a$
[Option ID = 23029]

Correct Answer :-

- $z=a x+b y-\sin (a b)$
[Option ID = 23027]

18) The partial differential equation $y u_{x x}+2 x y u_{x y}+x u_{y y}=u_{x}+u_{y}$ is
[Question ID = 5759]
1. Hyperbolic in $\{(x, y) \mid 0<x y<1\}$
[Option ID $=23030$]
2. Hyperbolic in $\{(x, y) \mid x y>1\}$
[Option ID = 23031]
3. Elliptic in $\{(x, y) \mid x y>1\}$
[Option ID = 23032]
4. Elliptic in $\{(x, y) \mid x y<0\}$
[Option ID = 23033]

Correct Answer :-

- Hyperbolic in $\{(x, y) \mid x y>1\}$
[Option ID = 23031]

19) The general solution of the equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=x-y$ is
[Question ID = 5760]
1. $\frac{1}{4} x(x-y)^{2}+\emptyset_{1}\left(x^{2}+y\right)+\emptyset_{2}(x-y)$
[Option ID $=23034$]
2. $\frac{1}{4} x(x-y)^{2}+\emptyset_{1}(x+y)+\emptyset_{2}(x-y)$
[Option ID $=23035$]
3. $\emptyset_{1}(x+y)+\emptyset_{2}\left(x^{2}-y\right)$
[Option ID = 23036]
4. $\emptyset_{1}\left(x^{2}+y\right)+\emptyset_{2}\left(x^{2}-y\right)-\frac{1}{4} x(x+y)$
[Option ID = 23037]
Correct Answer :-

- $\frac{1}{4} x(x-y)^{2}+\emptyset_{1}(x+y)+\emptyset_{2}(x-y)$
[Option ID = 23035]

20) The general solution of $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with $u(0, t)=u(2, t)=0, u(x, 0)=\sin ^{3} \frac{\pi x}{2}$ and $u_{t}(x, 0)=0$ is
[Question ID = 5761]
1. $\frac{3}{4} \sin \frac{\pi x}{2} \sin \frac{\pi c t}{2}$
[Option ID $=23038$]
2. $\frac{3}{4} \sin \frac{\pi x}{2} \cos \frac{\pi c t}{2}-\frac{1}{4} \sin \frac{3 \pi x}{2} \cos \frac{3 \pi c t}{2}$
[Option ID $=23039$]
$3 \frac{3}{4} \frac{\pi x}{2} \cos \frac{\pi c t}{2}-\frac{1}{4} \sin \frac{3 \pi x}{2} \sin \frac{3 \pi c t}{2}$
[Option ID $=23040$]
3. $\frac{3}{4} \sin \frac{\pi x}{2} \cos \frac{\pi c t}{2}-\frac{1}{4} \cos \frac{3 \pi x}{2}$

- $\frac{3}{4} \sin \frac{\pi x}{2} \cos \frac{\pi c t}{2}-\frac{1}{4} \sin \frac{3 \pi x}{2} \cos \frac{3 \pi c t}{2}$
[Option ID = 23039]

21) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by
$f(x)= \begin{cases}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right), & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$
Then,
[Question ID = 5762]
1. $f_{x y}$ and $f_{y x}$ are continuous at $(0,0)$, and $f_{x y}(0,0)=f_{y x}(0,0)$
[Option ID = 23042]
2. $f_{x y}$ and $f_{y x}$ are discontinuous at $(0,0)$, but $f_{x y}(0,0)=f_{y x}(0,0)$
[Option ID = 23043]
3. $f_{x y}$ and $f_{y x}$ are continuous at $(0,0)$, but $f_{x y}(0,0) \neq f_{y x}(0,0)$ [Option ID = 23044]
4. $f_{x y}$ and $f_{y x}$ are discontinuous at $(0,0)$ and $f_{x y}(0,0) \neq f_{y x}(0,0)$
[Option ID = 23045]
Correct Answer :-

- $f_{x y}$ and $f_{y x}$ are discontinuous at $(0,0)$, but $f_{x y}(0,0)=f_{y x}(0,0)$
[Option ID = 23043]

22) The directional derivative of $f(x, y, z)=x y^{2}+y z^{2}+z x^{2}$ defined on \mathbb{R}^{3} along the tangent to the curve $x=t, y=t^{2}, z=t^{3}$ at the point $(1,1,1)$ is
[Question ID = 5763]
1. $-\frac{18}{\sqrt{14}}$
[Option ID = 23046]
2. $\frac{13}{\sqrt{14}}$
[Option ID = 23047]
3. $-\frac{13}{\sqrt{14}}$
[Option ID = 23048]
4. $\frac{18}{\sqrt{14}}$
[Option ID = 23049]
Correct Answer :-

- $\frac{18}{\sqrt{14}}$
[Option ID = 23049]

23) The unique polynomial of degree 2 passing through $(1,1),(3,27)$ and $(4,64)$ obtained by Lagrange interpolation is [Question ID = 5764]
1. $8 x^{2}-17 x+12$
[Option ID = 23050]
2. $8 x^{2}-19 x-12$
[Option ID = 23051]
3. $8 x^{2}+14 x-12$
[Option ID = 23052]
4. $8 x^{2}-19 x+12$

[Question ID = 5765]
5. 0.8512
[Option ID = 23054]
6. 0.8125
[Option ID = 23055]
7. 0.7625
[Option ID = 23056]
8. 0.6702
[Option ID = 23057]

Correct Answer :-

- 0.8512
[Option ID = 23054]

25) Consider the differential equation, $\frac{d y}{d x}=y-x, y(0)=2$. The absolute value of the difference in the solutions obtained by Euler method and Runge-Kutta second order method at $y(0.1)$ using step size 0.1 is
[Question ID = 5766]
1. 2.205 [Option ID = 23058]
2. 2.252 [Option $\mathrm{ID}=23059$]
3. 0.005 [Option ID $=23060$]
4. $0.055[$ Option ID $=23061]$

Correct Answer :-

- 0.005 [Option ID = 23060]

26) The approximate value of $(17)^{1 / 3}$ obtained after two iterations of Newton-Raphson method starting with initial

 approximation $x_{0}=2$ is[Question ID = 5767]

1. 2.7566
[Option ID = 23062]
2. 2.5826
[Option ID = 23063]
3. 2.6713
[Option ID = 23064]
4. 2.4566
[Option ID = 23065]
Correct Answer :-

- 2.5826
[Option ID = 23063]

27) For an infinite discrete metric space (X, d), which of the following statements is correct?
[Question ID = 5768]
1. X is compact
[Option ID = 23066]
2. For every $A \subseteq X, A^{\circ} \cup \bar{A}=X$, where \bar{A} and A° denote respectively the closure and interior of A in X
[Option ID = 23067]
3. X is connected
[Option ID = 23068]
4. X is not totally bounded
[Option ID = 23069]
28) Consider the metric space $\left(l_{2}, d\right)$ of squanwwwrifipst Reapkersciomwith the Ewalidwhinet Pandter.com $Y=\left\{e_{1}, e_{2}, \ldots\right\} \subseteq l_{2}$ where e_{i} is the sequence of $\mathbf{1}$ at the ${ }_{i-t h}$ place and 0 elsewhere. Then,
[Question ID = 5769]
1. Y is not compact and has no limit point
[Option ID = 23070]
2. Y is compact and each e_{i} is a limit point of Y
[Option ID = 23071]
3. Y is not compact and has a limit point
[Option ID = 23072]
4. Y is compact and has no limit point
[Option ID = 23073]

Correct Answer :-

- Y is not compact and has no limit point
[Option ID = 23070]

29) Let $C[0,1]$ be the set of real valued continuous functions on [0, 1] with sup-metric. Let $A=\{f \in C[0,1] \mid f(0)=0\}$ and $B=\{f \in C[0,1] \mid f(0)>0\}$ be the subspaces of $C[0,1]$. Then,
[Question ID = 5770]
1. Both A and B are complete
[Option ID = 23074]
2. A is complete but B is incomplete
[Option ID = 23075]
3. A is incomplete but B is complete
[Option ID = 23076]
4. Neither A nor B is complete
[Option ID = 23077]
Correct Answer :-

- A is complete but B is incomplete
[Option ID = 23075]

30) Let ${ }_{(\mathbb{R}, d)}$ and (\mathbb{R}, u) be the metric spaces with the discrete metric space ${ }_{d}$ and usual metric ${ }_{u}$ respectively.

Let $f:(\mathbb{R}, d) \rightarrow(\mathbb{R}, u)$ and $g:(\mathbb{R}, u) \rightarrow(\mathbb{R}, d)$ be the functions given by
$f(x)=g(x)= \begin{cases}0, & x \leq 0 \\ x+1, & x>0\end{cases}$
Then,
[Question ID = 5771]

1. Both f and g are continuous
[Option ID = 23078]
2. Neither f nor g is continuous
[Option ID = 23079]
3. f is continuous but g is not
[Option ID = 23080]
4. g is continuous but f is not
[Option ID = 23081]
Correct Answer :-

- f is continuous but g is not
[Option ID $=23080]$
[Question ID = 5772]

1. $\bar{Y}_{1} \cup Y_{2}$ is connected
[Option ID = 23082]
2. $Y_{1} \cup \bar{Y}_{2}$ is connected
[Option ID = 23083]
3. $\bar{Y}_{1} \cap Y_{2}$ is disconnected
[Option ID = 23084]
4. $\overline{Y_{1} \cap Y_{2}}$ is a non-empty bounded subset of \mathbb{R}^{2} [Option ID = 23085]

Correct Answer :-

- $\bar{Y}_{1} \cup Y_{2}$ is connected
[Option ID = 23082]

32) Let be the set of all real-valued Riemann integrable functions on and let be the function given by
$f(x)=\left\{\begin{array}{rr}0, & \text { if } x\end{array}=0\right.$
Which of the following statements is correct?
[Question ID = 5773]
1. f is monotonically decreasing on $[0,1]$ but $f \notin R[0,1]$
[Option ID = 23086]
2. f is monotonically decreasing on $[0,1]$ and $f \in R[0,1]$
[Option ID = 23087]
3. f is discontinuous at infinitely many points in $[0,1]$ but $f \notin R[0,1]$
[Option ID = 23088]
4. f is discontinuous at infinitely many points in $[0,1]$ and $f \in R[0,1]$
[Option ID = 23089]
Correct Answer :-

- f is discontinuous at infinitely many points in $[0,1]$ and $f \in R[0,1]$
[Option ID = 23089]

33) The improper integral
$\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}$
[Question ID = 5774]
1. Converges to π
[Option ID = 23090]
2. Converges to $\pi / 2$
[Option ID = 23091]
3. Converges to 0
[Option ID = 23092]
4. Diverges
[Option ID = 23093]

Correct Answer :-

- Converges to π
[Option ID = 23090]

34) Consider the functions $f(x)=\frac{x^{2}-1}{x-1}$ and $g(x)=\frac{\left|x^{2}-1\right|}{x-1}, x \neq 1$. Then
3. f has a removable discontinuity at $x=1$, while g has a jump discontinuity at $x=1$ [Option ID = 23096]
4. f has a jump discontinuity at $x=1$ while g has a removable discontinuity at $x=1$
[Option ID = 23097]
Correct Answer :-

- f has a removable discontinuity at $x=1$, while g has a jump discontinuity at $x=1$
[Option ID = 23096]

35) What is the length of the interval on which the function $f(x)=x^{3}-6 x^{2}-15 x+8$ is decreasing?
[Question ID = 5776]
1. 8
[Option ID = 23098]
2. 6
[Option ID = 23099]
3. 4
[Option ID = 23100]
4. 2
[Option ID = 23101]
Correct Answer :-

- 6
[Option ID = 23099]

36) Let $f:[a, b] \rightarrow \mathbb{R}$ be a monotonic function. Consider the following statements:
a. The function f obeys the maximum principle
b. The function f is Riemann integrable on [a, b]

Which of the above statement(s) is(are) true?
[Question ID = 5777]

1. Only (a)
[Option ID = 23102]
2. Only (b)
[Option ID = 23103]
3. Both (a) and (b)
[Option ID = 23104]
4. Neither (a) nor (b)
[Option ID = 23105]

Correct Answer :-

- Both (a) and (b)
[Option ID = 23104]

37) Consider the following:

a. $\langle(a, b),(c, d)\rangle=a c-b d,(a, b),(c, d) \in \mathbb{R}^{2}$
b. $\langle f(x), g(x)\rangle=\int_{0}^{1} f^{\prime}(x) g(x) d x$, where $f(x), g(x)$ are polynomials over \mathbb{R}

Which of the above is(are) an inner product?
[Question ID = 5778]

1. Neither (a) nor (b)
[Option ID = 23106]
2. Both (a) and (b)
3. Only (a)
38) Let $T=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$. Then $-T^{3}+4 T^{2}+5 T-2 I$ is equal to
[Question ID = 5779]
1. $10 T+4 I$
[Option ID = 23110]
2. $10 T-4 I$
[Option ID = 23111]
3. $-10 T+4 I$
[Option ID = 23112]
4. $-10 T-4 I$
[Option ID = 23113]

Correct Answer :-

- $10 T-4 I$
[Option ID = 23111]

39) Let ${ }_{V}$ be an infinite dimensional vector space over a field F.

Consider the following statements:

a. Any one-one linear transformation from V to itself is onto
b. Any onto linear transformation from V to itself must be one-one

Which of the above statements is (are) correct?
[Question ID = 5780]

1. Both (a) and (b)
[Option ID = 23114]
2. Only (a)
[Option ID = 23115]
3. Only (b)
[Option ID = 23116]
4. Neither (a) nor (b)
[Option ID = 23117]

Correct Answer :-

- Neither (a) nor (b)
[Option ID = 23117]

40) Let $P_{n}(\mathbb{R})$ be the set of all polynomials over \mathbb{R} of degree at most ${ }_{n}$. Let $T: P_{n}(\mathbb{R}) \rightarrow P_{n+1}(\mathbb{R})$ be given by $T(f(x))=x f(x)$. Then
[Question ID = 5781]
1. T is one-one and onto linear transformation
[Option ID = 23118]
2. T is an onto function but neither a linear transformation nor one-one
[Option ID = 23119]
3. T is not onto but a one-one linear transformation
[Option ID = 23120]
4. T is one-one but neither a linear transformation nor onto
[Option ID = 23121]

- $T_{\text {is }}$ not onto but a one-one linear transformation

```
                            Dt \mathbb{Z}
[Option ID = 23122]
2. \(a-4\)
[Option ID = 23123]
3. \(4-a\)
[Option ID = 23124]
4. \(6-a\)
[Option ID = 23125]
```

Correct Answer :-

- $4-a$
[Option ID = 23124]

42) Let G be a group of even order. Suppose that exactly half of G consists of elements of order

2 and the rest forms a subgroup H of G. Which of the following statements is incorrect?
[Question ID = 5783]

1. H is a normal subgroup of G
[Option ID = 23126]
2. Order of H is even
[Option ID = 23127]
3. H is abelian
[Option ID = 23128]
4. $|G: H|=2$
[Option ID = 23129]
Correct Answer :-

- Order of H is even
[Option ID = 23127]

43) Let ${ }_{G}$ and ${ }_{K}$ be finite groups such that $|G|=21$ and $|K|=49$. Suppose ${ }_{G}$ does not have a normal subgroup of order 3. Let ${ }_{L}$ be the set of all group homomorphism from ${ }_{G}$ to ${ }_{K}$. Then the number of elements in ${ }_{L}$ is
[Question ID = 5784]
1. 1
[Option ID = 23130]
2. 3
[Option ID = 23131]
3. 5
[Option ID = 23132]
4. 7
[Option ID = 23133]
Correct Answer :-

- 1
[Option ID = 23130]

44) Let ${ }_{G}$ be a finite group of $a \in G$ has exactly two conjugates. Suppose that $C(a)=\left\{x^{-1} a x \mid x \in G\right\}$ and $N(a)=\{x \in G \mid a x=x a\}$.

Which of the following statements is incorrect?
[Question ID = 5785]

1. The number of elements in $C(a)$ is a prime number
www.FirstRanker.com
[Option ID = 23137]

Correct Answer :-

- G is a simple group
[Option ID = 23135]

45) Let G be a finite group of order 385. Let H, K and L be p-Sylow subgroups of G for $p=5,7$ and 11 , respectively. Which of the following statements is incorrect?
[Question ID = 5786]
1. K is a normal subgroup of G
[Option ID = 23138]
2. L is normal subgroup of G
[Option ID = 23139]
3. $H K$ is a non-abelian subgroup of G
[Option ID $=23140$]
4. $G=H K L$
[Option ID = 23141]

Correct Answer :-

- $H K$ is a non-abelian subgroup of G
[Option ID = 23140]

46) The remainder when 2020^{2020} is divided by 12 is
[Question ID = 5787]
1. 0 [Option ID $=23142$]
2. 2 [Option ID = 23143]
3. 4 [Option ID $=23144]$
4. 8 [Option ID $=23145$]

Correct Answer :-

- 4 [Option ID = 23144]

47) The smallest integer $a>2$ such that $2|a, 3|(a+1), 4|(a+2), 5|(a+3)$ and $6 \mid(a+4)$ is

[Question ID = 5788]

1. 14
[Option ID = 23146]
2. 56
[Option ID = 23147]
3. 122
[Option ID = 23148]
4. 62
[Option ID = 23149]
Correct Answer :-

- 62
[Option ID = 23149]

48) Let $R=\left\{\left.\left(\begin{array}{ll}a & b \\ b & a\end{array}\right\} \right\rvert\, a, b \in \mathbb{Z}\right.$ be a ring and $f: R \rightarrow \mathbb{Z}$ be given by $\varnothing\left(\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)\right)=a-b$. Which of the following statements is incorrect?
[Question ID = 5789]
1. \emptyset is a ring homomorphism
[Option-ID = 23150]
2. ker \emptyset is a prime ideal but not maximal
3. ker \emptyset is maximal ideal

Correct Answer :-

- ker \emptyset is maximal ideal
[Option ID = 23152]

49) Consider the following statements

a. A polynomial is irreducible over a field F if it has no zeros in F
b. Let $f(x) \in \mathbb{Z}[x]$. If $f(x)$ is reducible over \mathbb{Q}, then it is reducible over \mathbb{Z}
c. For any prime p, the polynomial $x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible over \mathbb{Q}

Which of the above statements is (are) correct?
[Question ID = 5790]

1. Only (a) and (b)
[Option ID = 23154]
2. Only (a) and (c)
[Option ID = 23155]
3. Only (b) and (c)
[Option ID = 23156]
4. All of (a), (b) and (c)
[Option ID = 23157]
Correct Answer :-

- Only (b) and (c)
[Option ID = 23156]

50) Which of the following is a Euclidean domain?
[Question ID = 5791]
1. $\mathbb{Q}[x] /\left\langle x^{3}-2\right\rangle$
[Option ID = 23158]
2. $\mathbb{Z}[x]$
[Option ID = 23159]
3. $\mathbb{Q}[x, y]$
[Option ID = 23160]
4. None of these
[Option ID = 23161]

Correct Answer :-

- $\mathbb{Q}[x] /\left\langle x^{3}-2\right\rangle$
[Option ID = 23158]

