	A MSc Stational firstRanker.com	www.FirstRanker.com
Topic:- STATS MA S2		
1) The vectors (a_1, a_2) and $(b_1, [Question ID = 7411]$ 1. $a_1 b_2 = a_2 b_1$ [Option ID = 29638] 2. $a_1^{2} = b_1^{2}$ and $a_2^{2} = b_2^{2}$ [Option ID = 29633] 3. $a_1 b_1 = a_2 b_2$ [Option ID = 29640] 4. $a_1 a_2 = b_1 b_2$ [Option ID = 29641]	b ₂) in R ⁽²⁾ are linearly dependent if and only if 639]	
Correct Answer :- • a ₁ b ₂ = a ₂ b ₁ [Option ID = 29638]		
2) The set $W=\{(a_1, a_2, a_3): a_1, a_2, a_3)$	a_2 , $a_3 \in R$ }, is not a subspace of $R^{(3)}$, if	
[Question ID = 7412] 1. $a_3 = a_1 + a_2$ [Option ID = 29642] 2. $a_3 = 0$		
[Option ID = 29643] 3. $a_1a_2=0$ [Option ID = 29644] 4. None of these		
[Option ID = 29645]		
Correct Answer :- • a ₁ a ₂ =0		
$\left[Option D - 29644 \right]$		
3) If α , β , γ are the roots of $x^3 \cdot (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ is [Question ID = 7413] 1. $q^2 - 2pq$	p x^2 + qx - r=0, then the value of	
3) If α , β , γ are the roots of x^3 . $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$	p x^2 + qx - r=0, then the value of	
3) If α , β , γ are the roots of x^3 . $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq	p x ² + qx - r=0, then the value of	
(a) If a, b, γ are the roots of x^3 . ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29649]	p x ² + qx - r=0, then the value of	
($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] ($q^2 - 2pq$ [Option ID = 29646] pq + r [Option ID = 29647] pq [Option ID = 29648] qp - r [Option ID = 29649] Correct Answer :- qp - r	p x ² + qx - r=0, then the value of	
($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] ($q^2 - 2pq$ [Option ID = 29646] pq + r [Option ID = 29647] pq [Option ID = 29648] qp - r [Option ID = 29649] Correct Answer :- qp - r [Option ID = 29649]	p x ² + qx - r=0, then the value of	
(a + β) (β + γ) (γ + α) is [Question ID = 7413] ($\alpha + \beta$) ($\beta + \gamma$) ($\gamma + \alpha$) is [Question ID = 7413] ($q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29646] 3. pq [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29649] Correct Answer :- • $qp - r$ [Option ID = 29649] 4) Among the following system of the system of t	p x ² + qx - r=0, then the value of of equations	
(a) If a, b, γ are the roots of x^3 . ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29649] Correct Answer :- • $qp - r$ [Option ID = 29649] 4) Among the following system of $2x-5y+7z=6$,	p x ² + qx - r=0, then the value of of equations	
(a) If a, b, γ are the roots of x^3 . ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29649] Correct Answer :- • $qp - r$ [Option ID = 29649] 4) Among the following system of $2x-5y+7z=6$, x-3y+4z=3,	p x ² + qx - r=0, then the value of	
(a) If a, b, γ are the roots of x^3 . ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29648] 4. $qp - r$ [Option ID = 29649] Correct Answer :- • $qp - r$ [Option ID = 29649] 4) Among the following system of $2x-5y+7z=6$, x-3y+4z=3, 3x-8y+11z=11,	p x ² + qx - r=0, then the value of	
(a) If a, b, γ are the roots of x^3 . ($\alpha + \beta$)($\beta + \gamma$)($\gamma + \alpha$) is [Question ID = 7413] 1. $q^2 - 2pq$ [Option ID = 29646] 2. $pq + r$ [Option ID = 29647] 3. pq [Option ID = 29648] 4. $qp - r$ [Option ID = 29649] Correct Answer :- • $qp - r$ [Option ID = 29649] 4) Among the following system of $2x-5y+7z=6$, x-3y+4z=3, 3x-8y+11z=11, which one of the following is true	p x ² + qx - r=0, then the value of of equations e?	

[Option ID = 29651]

[Option ID = 29053]	www.FirstRanker.com	www.FirstRanker.com
Correct Answer :-		
• The system of equations are inconsistent		
[Option ID = 29651]		
5) If $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, then which one of the	following is true	
[Question ID = 7415] 1. λ=2 and 4 are the eigen-values corresponding to	D A	
[Option ID = 29654] 2. λ=1 and 2 are the eigen-values corresponding to	A	
[Option ID = 29655] 3. $v_1=(2, -1)$ and $v_2=(1, 1)$ are the eigen vectors co	prresponding to A	
[Option ID = 29656] 4. $v_1=(2, 1)$ and $v_2=(-1, 1)$ are the eigen vectors co	prresponding to A	
[Option ID = 29657]		
Correct Answer :-		
• $v_1=(2, -1)$ and $v_2=(1, 1)$ are the eigen vectors co	prresponding to A	
נסנסאב = או ווסוזעט]		
of $e^{-\theta}$ is		
[Question ID = 7416]		
$\exp(\overline{x})$		
$[Option ID = 29658]$ 2. exp($-\overline{X}$)		
[Option ID = 29658] 2. $exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X}		
$exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $exp\left(\frac{-1}{\overline{x}}\right)$		
[Option ID = 29658] 2. $\exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $\exp(\frac{-1}{\overline{X}})$ [Option ID = 29661]		
$exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $exp\left(\frac{-1}{\overline{X}}\right)$ [Option ID = 29661] Correct Answer :-		
$\left[\begin{array}{c} \operatorname{Option} \mathrm{ID} = 29658 \right] \\ 2. \ \exp(-\overline{X}) \\ \left[\operatorname{Option} \mathrm{ID} = 29659 \right] \\ 3. \ \overline{X} \\ \left[\operatorname{Option} \mathrm{ID} = 29660 \right] \\ 4. \ \exp\left(\frac{-1}{\overline{X}}\right) \\ \left[\operatorname{Option} \mathrm{ID} = 29661 \right] \\ \end{array} \right] \\ Correct Answer :- \\ \bullet \ \exp\left(\frac{-1}{\overline{X}}\right) \\ \end{array}$		
$exp(\overline{x})$ [Option ID = 29658] 2. $exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $exp(\frac{-1}{\overline{x}})$ [Option ID = 29661] Correct Answer :- • $exp(\frac{-1}{\overline{x}})$ [Option ID = 29661]		
$\exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $\exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] Correct Answer :- • $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661]		2
$\exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $\exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $\exp\left(\frac{-1}{\overline{X}}\right)$ [Option ID = 29661] Correct Answer :- • $\exp\left(\frac{-1}{\overline{X}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is,	eles with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = rac{2}{n(n+1)} \sum_{i=1}^n i X_i$, for
$\exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $\exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] Correct Answer :- • $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variab estimating μ . Then, Tn is, [Ouestion ID = 7417]	oles with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n i X_i$, for
$\exp\left(\frac{1}{x}\right)$ [Option ID = 29658] 2. $\exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] Correct Answer :- • $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is, [Question ID = 7417] 1. Unbiased and consistent	oles with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n i X_i$, for
$exp(\frac{1}{x})$ [Option ID = 29658] 2. $exp(-\overline{X})$ [Option ID = 29659] 3. \overline{X} [Option ID = 29660] 4. $exp(\frac{-1}{\overline{x}})$ [Option ID = 29661] Correct Answer :- • $exp(\frac{-1}{\overline{x}})$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is, [Question ID = 7417] 1. Unbiased and consistent [Option ID = 29662] 2. Biased and consistent	oles with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n i X_i$, for
[Option ID = 29658] [Option ID = 29659] \overline{X} [Option ID = 29660] \overline{X} [Option ID = 29660] \overline{X} [Option ID = 29661] Correct Answer :- • $exp\left(\frac{-1}{\overline{X}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is, [Question ID = 7417] 1. Unbiased and consistent [Option ID = 29662] 2. Biased and consistent [Option ID = 29663] 3. Unbiased but not consistent	ples with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$, for
[Option ID = 29658] (Option ID = 29659] \overline{X} [Option ID = 29660] $exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] Correct Answer :- $exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is, [Question ID = 7417] 1. Unbiased and consistent [Option ID = 29662] 2. Biased and consistent [Option ID = 29663] 3. Unbiased but not consistent [Option ID = 29664] 4. Biased and not consistent	oles with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$, for
[Option ID = 29658] [Option ID = 29659] \overline{X} [Option ID = 29660] $\frac{1}{\sqrt{x}}$ [Option ID = 29660] $\frac{1}{\sqrt{x}}$ [Option ID = 29661] Correct Answer :- • $\exp\left(\frac{-1}{\overline{x}}\right)$ [Option ID = 29661] 7) Let Xi, i= 1, 2,, n, be i.i.d random variable estimating μ . Then, Tn is, [Question ID = 7417] 1. Unbiased and consistent [Option ID = 29662] 2. Biased and consistent [Option ID = 29663] 3. Unbiased but not consistent [Option ID = 29664] 4. Biased and not consistent [Option ID = 29665]	ples with E(Xi)= μ and $Var(X_i) < \infty$. Conside	er an estimator $T_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$, for

8) A random sample of size n is drawn from distributions of the independent random

, X₂, F_{n} , Let fi k; θ) denote the p.d.f of X_i, i= 1, 2, ..., n, and let $L(\underline{x}, \theta)$ be the second sec

Kab iFietatransker's choice

2. $\hat{\alpha} = \frac{\bar{x}^2}{a^2}; \hat{\beta} = \frac{\bar{x}}{a^2}$

www.FirstRanker.com

www.FirstRanker.com

[Here, $\Upsilon(\theta)$ is the parametric function to be estimated.]

[Question ID = 7418] 1. $V(T) \ge$ [Option ID = 29666] 2. $V(T) \ge \frac{\ln C}{nE\left[\left\{\frac{\partial \log f(x,\theta)}{\partial \theta}\right\}^2\right]}$ $[\gamma'(\theta)]^2$ [Option ID = 29667] $-[\gamma'(\theta)]$ 3. $V(T) \geq$ nE [Option ID = 29668] 4. All of these [Option ID = 29669] Correct Answer :- $-[\gamma'(\theta)]^2$ $V(T) \geq$ $E\left[\frac{\partial^2 logL(\underline{x},\theta)}{\partial \theta^2}\right]$ [Option ID = 29666] 9) Based on a random sample of size n (X_1 , X_2 ,..., X_n) from Cauchy(θ) distribution. A sufficient statistic for θ is [Question ID = 7419] 1. \overline{X} , the sample mean [Option ID = 29670] 2. \widetilde{X} , the sample median [Option ID = 29671] 3. $\prod_{i=1}^{n} X_i$ [Option ID = 29672] 4. Sufficient statistic does not exist for θ [Option ID = 29673] Correct Answer :-• Sufficient statistic does not exist for $\boldsymbol{\theta}$ [Option ID = 29673] 10) Let $X_1, X_2, ..., X_n$ be a random sample from U(- θ , θ) distribution. Maximum likelihood estimator of θ is [Question ID = 7420] 1. $X_{(n)}$, the nth order statistic [Option ID = 29674] 2. $X_{(1)}$, the first order statistic [Option ID = 29675] 3. Maximum(- $X_{(1)}$, $X_{(n)}$) [Option ID = 29676] 4. Minimum(-X₍₁₎, X_(n)) [Option ID = 29677] Correct Answer :- Maximum(-X₍₁₎, X_(n)) [Option ID = 29676] 11) Let X₁, X₂,, X_n be a random sample from a distribution with the following p.d.f, $f(x,\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}; \ x > 0, \alpha, \beta > 0$ The method of moments estimators of α and β are where, $(s^2 = \frac{1}{n} \sum (X_i - \bar{X})^2)$ and $(S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2)$ [Question ID = 7421] ¹· $\hat{\alpha} = \left(\frac{\bar{x}}{r^2}\right)^2$; $\hat{\beta} = \frac{\bar{x}}{r^2}$ www.FirstRanker.com [Option ID = 29678]

	STIDSINEL S CHOICE	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 4. $\hat{\alpha} = \bar{x}; \hat{\beta} =$	$\frac{29680]}{s^2}$		
[Option ID =	29681]		
Correct Answe	er :-		
• $\hat{\alpha} = \frac{\bar{x}^2}{s^2}; \hat{\beta}$	$=\frac{\bar{x}}{s^2}$		
[Option ID =	29679]		
4.0))////-11	C d		
is defined as	a confidence	interval for an unknown parameter $ heta$ usin	ig Pivotai quantity metnod, a pivotai quan
[Question ID 1. function of a	= 7422] a statistic T, such that its distri	ibution is independent of θ	
[Ontion ID =	296821		
2. function of	a statistic T and the parameter	r $ heta$, such that its distribution is independent of $ heta$	
[Option ID = 3. function of a	29683] a statistic T, where T is sufficie	ent for $ heta$	
[Option ID = 4. function of a	29684] a statistic T, such that its distr	ibution is a function of ${oldsymbol{ heta}}$	
[Option ID =	29685]		
Correct Answe	er :-		
• function of	a statistic T and the parameter	r $ heta$, such that its distribution is independent of $ heta$	
[Option ID =	29683] of the following is NOT TR	UE about Neyman-Pearson Lemma in hypo	othesis testing?
[Option ID = 13) Which c [Question ID 1. The most po $W = \left\{ \underline{x} \in \right\}$	29683] of the following is NOT TR = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L ₀ and L ₁ a	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel	othesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \left\{ \underline{x} \in [Option ID = 2] \right\}$ 2. It holds for c	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L ₀ and L ₁ a 29686] only a simple null hypothesis ag	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis.	othesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{ \underline{x} \in [0ption ID = 2, It holds for co [Option ID = 3, It does not g$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L ₀ and L ₁ a 29686] only a simple null hypothesis ag 29687] give us the uniformly most powe	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis.	othesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{ \underline{x} \in [Option ID = 2, It holds for construction ID = 3, It does not go [Option ID = 4, None of these section 1 = 1, 1 = $	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L ₀ and L ₁ a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se.	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis. erful critical region directly.	othesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{ \underline{x} \in [Option ID = [Option I$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689]	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis. erful critical region directly.	o thesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{ \underline{x} \in [Option ID =]$ 2. It holds for c [Option ID = 3. It does not g [Option ID = 4. None of thes [Option ID = 4. None of thes [Option ID = 5. [Option ID =] 5. [29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er :- werful critical region is given b	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis. erful critical region directly.	othesis testing? ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{\underline{x} \in [Option ID = [Option $	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er:- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis. erful critical region directly. by re likelihood functions under H ₀ and H ₁ respectivel	o <mark>thesis testing?</mark> ly, S is the sample space, and k is a positive consta ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{\underline{x} \in [Option ID = [Option $	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686]	UE about Neyman-Pearson Lemma in hypoon y re likelihood functions under H ₀ and H ₁ respectived gainst a simple alternative hypothesis. erful critical region directly. y re likelihood functions under H ₀ and H ₁ respectived	othesis testing? ly, S is the sample space, and k is a positive consta ly, S is the sample space, and k is a positive consta
[Option ID = 13) Which c [Question ID 1. The most po $W = \{\underline{x} \in [Option ID = [Option $	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a	UE about Neyman-Pearson Lemma in hypo by re likelihood functions under H ₀ and H ₁ respectivel gainst a simple alternative hypothesis. erful critical region directly. by re likelihood functions under H ₀ and H ₁ respectivel random sample of size n, let	by S is the sample space, and k is a positive constant
[Option ID = 13) Which c [Question ID 1. The most point $W = \{\underline{x} \in [Option ID = [Opti$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a b hypothesis	UE about Neyman-Pearson Lemma in hypo	h thesis testing? ly, S is the sample space, and k is a positive constant
[Option ID = 13) Which c [Question ID 1. The most poon $W = \{\underline{x} \in [Option ID = [Optio$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a m hypothesis rnative hypothesis	UE about Neyman-Pearson Lemma in hypo	by by the sample space, and k is a positive constant of the sample space, and k is a positive constant of the sample space, and k is a positive constant of the sample space, and k is a positive constant of the sample space.
[Option ID = 13) Which of [Question ID 1. The most por $W = \{ \underline{x} \in [Option ID =]$ 2. It holds for of [Option ID = 3. It does not g [Option ID = 4. None of thes [Option ID = 4. None of the null $W = \{ \underline{x} \in [Option ID =]$ 14) For a hy H ₀ - the null H ₁ - the alte W- the critic	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er:- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a hypothesis rnative hypothesis rative hypothesis rational contents of the second	UE about Neyman-Pearson Lemma in hypo	by S is the sample space, and k is a positive constant
[Option ID = 13) Which α [Question ID 1. The most point $W = \{\underline{x} \in [0ption ID = [0pti$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a m hypothesis rnative hypothesis cal region eptance region	UE about Neyman-Pearson Lemma in hypo	by S is the sample space, and k is a positive constant
[Option ID = 13) Which c [Question ID 1. The most point $W = \{\underline{x} \in [Option ID = [Opti$	29683] of the following is NOT TRU k = 7423] werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] only a simple null hypothesis ag 29687] give us the uniformly most power 29688] se. 29689] er :- werful critical region is given b $S: \frac{L_0}{L_1} > k$; where L_0 and L_1 a 29686] ypothesis test based on a b hypothesis rnative hypothesis sal region eptance region of function of the sample	UE about Neyman-Pearson Lemma in hypo	h thesis testing? ly, S is the sample space, and k is a positive constant

$\int_{-\infty}^{n-you} L_1 dx$		
5W 1 _	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 29691]		
3. $\int_{\overline{W}}^{n-j o i d} L_1 d \underline{x}$		
[Option ID = 29692]		
4. $1 - \int_{W}^{W} f^{out} L_0 d\underline{x}$		
[Option ID = 29693]		
Correct Answer :-		
• $\int_{W}^{n-fota} L_1 d\underline{x}$		
[Option ID = 29691]		
15) Which of the following statistic is N	OT complete?	
[Question ID = 7425]		
1. T(X)= X; where X ~ U(-θ, θ)		
[Option ID = 29694] 2. $T(\underline{X}) = \sum_{i=1}^{n} (X_i - \mu)^2$; where $X_i \sim N(\mu, \sigma^2)$	²)and μ is known.	
[Option ID = 29695]		
3. $T(\underline{X}) = \sum_{i=1}^{n} X_i$; where $X_i \sim Poisson(\theta)$		
[Option ID = 29696] 4. None of these		
[Option ID = 29697]		
Correct Answer :-		
 T(X)= X; where X ~ U(-θ, θ) 		
[Option ID = 29694] 16) Which of the following is an instanc [Question ID = 7426]	e of non-sampling error?	
[Option ID = 29694] 16) Which of the following is an instanc [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2)	e of non-sampling error?	
 [Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] 	e of non-sampling error?	
 [Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- (3) Piac due to interviewer. 	e of non-sampling error?	
 [Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- (2) Bias due to interviewer. [Option ID = 29699] 	e of non-sampling error?	
<pre>[Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- • (2) Bias due to interviewer. [Option ID = 29699] 17) A population consists of four units 2 simple random sampling without replace mean is given by, [Question ID = 7427] 1. (6, 3.33) [Option ID = 29704] 3. (6, 10) [Option ID = 29704] 4. (10, 3.33) [Option ID = 29705]</pre>	e of non-sampling error? 2, 4, 8 and 10. All possible samples of size 2 ement. Estimate of population mean and va	2 are drawn from this population by riance of the estimate of population
<pre>[Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- • (2) Bias due to interviewer. [Option ID = 29699] 17) A population consists of four units 2 simple random sampling without replace mean is given by, [Question ID = 7427] 1. (6, 3.33) [Option ID = 29702] 2. (6, 5) [Option ID = 29704] 4. (10, 3.33) [Option ID = 29705] Correct Answer :- </pre>	e of non-sampling error? 2, 4, 8 and 10. All possible samples of size 2 ement. Estimate of population mean and va	2 are drawn from this population by riance of the estimate of population
[Option ID = 29694] 16) Which of the following is an instanc [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- • (2) Bias due to interviewer. [Option ID = 29699] 17) A population consists of four units 2 simple random sampling without replace mean is given by, [Question ID = 7427] 1. (6, 3.33) [Option ID = 29702] 2. (6, 5) [Option ID = 29703] 3. (6, 10) [Option ID = 29704] 4. (10, 3.33) [Option ID = 29705] Correct Answer :- • (6, 3.33) [Option ID = 29702]	e of non-sampling error? 2, 4, 8 and 10. All possible samples of size 2 ement. Estimate of population mean and va	2 are drawn from this population by riance of the estimate of population
 [Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- (2) Bias due to interviewer. [Option ID = 29699] 17) A population consists of four units 2 simple random sampling without replace mean is given by, [Question ID = 7427] 1. (6, 3.33) [Option ID = 29702] 2. (6, 5) [Option ID = 29703] 3. (6, 10) [Option ID = 29704] 4. (10, 3.33) [Option ID = 29705] Correct Answer :- (6, 3.33) [Option ID = 29702] 18) Gain in efficiency of stratified rand Founction ID = ID = 74291 	e of non-sampling error? 2, 4, 8 and 10. All possible samples of size 2 ement. Estimate of population mean and va	2 are drawn from this population by riance of the estimate of population
[Option ID = 29694] 16) Which of the following is an instance [Question ID = 7426] 1. (1) Faulty selection of sample. [Option ID = 29698] 2. (2) Bias due to interviewer. [Option ID = 29699] 3. (3) Defective frame. [Option ID = 29700] 4. Both 1) and 2) [Option ID = 29701] Correct Answer :- • (2) Bias due to interviewer. [Option ID = 29699] 17) A population consists of four units 2 simple random sampling without replace mean is given by, [Question ID = 7427] 1. (6, 3.33) [Option ID = 29702] 2. (6, 5) [Option ID = 29703] 3. (6, 10) [Option ID = 29704] 4. (10, 3.33) [Option ID = 29705] Correct Answer :- • (6, 3.33) [Option ID = 29702] 18) Gain in efficiency of stratified rand [Question ID = 7428] 1 $V(\bar{y}_{st}) - V(\bar{y}_n)_R$	e of non-sampling error? 2, 4, 8 and 10. All possible samples of size 2 ement. Estimate of population mean and va	2 are drawn from this population by riance of the estimate of population is defined as:

V/m)	www.FilStNalikel.com	www.FirstRanker.com
v (y _{st})		
[Option ID = 29708] 4. $\frac{V(\overline{y}_n)_R - V(\overline{y}_{st})}{V(\overline{y}_{st})}$		
[Option ID = 29709]		
Correct Answer :- • $\frac{V(\overline{y}_n)_R - V(\overline{y}_{st})}{V(\overline{y}_{st})}$		
[Option ID = 29709]		
19) The total sales amount of a product sales from 20 stores, the following data the current year = Rs. 1205. The ratio	ct from all 200 stores from last year was Rs 2 a was obtained. Total sales amount for last ye estimate of the total sales for the current ye	5,000. From a simple random sample of ear = Rs. 900 and total sales amount for ear will be:
[Question ID = 7429] 1. Rs. 33,472		
[Option ID = 29710] 2. Rs. 18,672		
[Option ID = 29711] 3. Rs. 18,075		
[Option ID = 29712] 4. None of these		
[Option ID = 29713]		
Correct Answer :- • Rs. 33,472		
[Option ID = 29710] 20) In case of a population with the p	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] I. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] I. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] I. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717]	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :-	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716]	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716]	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_{n}) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_{R} = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 21) An experimental design which allow	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true: ach treatment under study is
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 21) An experimental design which allow [Question ID = 7431] 1. Completely Randomized Block Design	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true: ach treatment under study is
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_{n}) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_{R} = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 21) An experimental design which allow [Question ID = 7431] 1. Completely Randomized Block Design [Option ID = 29718] 2. Completely Randomized Design	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_n) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_R = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_n)_R = \frac{1}{n} :1: n$ [Option ID = 29716] 21) An experimental design which allow [Question ID = 7431] 1. Completely Randomized Block Design [Option ID = 29718] 2. Completely Randomized Design [Option ID = 29719] 3. Latin Square Design	resence of linear trend Y _i = i, i = 1,2,,k, th	e following relation holds true:
[Option ID = 29710] 20) In case of a population with the p [Question ID = 7430] 1. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = n :1: \frac{1}{n}$ [Option ID = 29714] 2. $V(\bar{y}_{n}) : V(\bar{y}_{str}) : V(\bar{y}_{syst})_{R} = n :1: \frac{1}{n}$ [Option ID = 29715] 3. $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 4. None of these [Option ID = 29717] Correct Answer :- • $V(\bar{y}_{st}) : V(\bar{y}_{syst}) : V(\bar{y}_{n})_{R} = \frac{1}{n} :1: n$ [Option ID = 29716] 21) An experimental design which allow [Question ID = 7431] 1. Completely Randomized Block Design [Option ID = 29718] 2. Completely Randomized Design [Option ID = 29719] 3. Latin Square Design [Option ID = 29720] 4. None of these	resence of linear trend Y _i = i, i = 1,2,,k, th	ach treatment under study is

22) For a Latin squar			
corresponding to the	e design with 5 tr umn and the fourt	eatments arranged in From th treatment is missing. To on are 125 and 265. Total	we and 5 columns, the observation corresponding to the tal of known observations in the row and column of known observations receiving the fourth treatment a
total of all known obs	ervations are 220	and 950 respectively. An	of known observations receiving the fourth treatment a estimate of the missing observation and the error degre
of freedom can be ob	tained respective	ly as:	5
[Question ID = 7432]	= 297221		
2. 95.8 and 11 [Option ID	= 29723]		
 95.8 and 12 [Option ID 57.5 and 12 [Option ID 	= 29724] = 29725]		
Correct Answer :-			
• 95.8 and 11 [Option ID	= 29723]		
23) The total numbe	r of factorial effec	cts in a 2 ⁿ factorial experi	ment is:
[Question ID = 7433]			
[Option ID = 29726] 2 $2(n-1)$			
[Option ID = 29727]			
3. 2 ⁿ - 1			
[Option ID = 29728] 4. None of these			
[Option ID = 29729]			
Correct Answer :-			
• Z'' - 1			
[Option ID = 29/28]			
24) The total yield of t	he treatments of a	22 factorial experiment repl	licated 4 times are:
	b0	b1	
a0	20	44	
a1	32	52	
The simple effect of fac	tor A at first level	of B and the interaction effe	ect AB can be estimated as
[Question ID = 7434]			
1. 12 and -2			
 1. 12 and -2 [Option ID = 29730] 2. 10 and -2 			
 1. 12 and -2 [Option ID = 29730] 2. 10 and -2 [Option ID = 29731] 3. 2.5 and -0.5 			
 12 and -2 [Option ID = 29730] 10 and -2 [Option ID = 29731] 2.5 and -0.5 [Option ID = 29732] 3 and -0.5 			
 12 and -2 [Option ID = 29730] 10 and -2 [Option ID = 29731]			
 1. 12 and -2 [Option ID = 29730] 2. 10 and -2 [Option ID = 29731] 3. 2.5 and -0.5 [Option ID = 29732] 4. 3 and -0.5 [Option ID = 29733] Correct Answer :- 			
 12 and -2 [Option ID = 29730] 10 and -2 [Option ID = 29731] 2.5 and -0.5 [Option ID = 29732] 3 and -0.5 [Option ID = 29733] Correct Answer :- 3 and -0.5 [Option ID = 29733] 			

[Option ID = 29736] 4. abc, bcde

Ranker.<mark>co</mark>m www.FirstRanker.com www.FirstRanker.com ade, bcde, abo [Option ID = 29735] 26) A differential equation is considered to be ordinary if it has [Question ID = 7436] 1. One dependent variable [Option ID = 29738] 2. More than one dependent variable [Option ID = 29739] 3. One independent variable [Option ID = 29740] 4. More than one independent variable [Option ID = 29741] Correct Answer :-• One independent variable [Option ID = 29740] 27) If $y = a \cos(\log x) + b \sin(\log x)$, then [Question ID = 7437] 1. $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ [Option ID = 29742] 2. $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$ [Option ID = 29743] 3. $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$ [Option ID = 29744] 4. None of these [Option ID = 29745] Correct Answer :-• $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$ [Option ID = 29743] 28) Which of the following equations is a linear equation of order 3? [Question ID = 7438] 1. $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2}$. $\frac{dy}{dx} + y = x$ [Option ID = 29746] 2. $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y^2 = x^2$ [Option ID = 29747] 3. $x \frac{d^3y}{dx^3} + \frac{d^3y}{dx^3} = e^x$ [Option ID = 29748] 4. $\frac{d^2y}{dx^2} + \frac{dy}{dx} = \log x$ [Option ID = 29749] Correct Answer :-• $x\frac{d^3y}{dx^3} + \frac{d^3y}{dx^3} = e^x$ [Option ID = 29748] 29) For the exact differential equation of the form $M\,dx + N\,dy = 0$ [Question ID = 7439] 1. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ www.FirstRanker.com [Option ID = 29750] 2. $\frac{\partial M}{\partial u} \neq \frac{\partial N}{\partial u}$

FirstRanker.com www.FirstRanker.com www.FirstRanker.com 4. $\frac{[\text{Option ID} = 29752]}{\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}}$ [Option ID = 29753] Correct Answer :-• $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ [Option ID = 29750] 30) The integrating factor of the differential equation $(1-y^2)\frac{dx}{dy} - yx = 1$ is : [Question ID = 7440] 1. $\frac{1}{\sqrt{(1-y^2)}}$ [Option ID = 29754] 2. $\sqrt{(1-y^2)}$ [Option ID = 29755] 3. $\frac{1}{(1-y^2)}$ [Option ID = 29756] 4. $1 - y^2$ [Option ID = 29757] Correct Answer :-• $\sqrt{(1-y^2)}$ [Option ID = 29755] 31) The probability that a student passes a Multivariate test is 2/3 and the probability that he/she passes both a Multivariate test and Data Mining test is 14/45. The probability that he/she passes at least one test is 4/5. Then the probability that he/she passes the Data Mining test is: [Question ID = 7441] 1. 4/9 [Option ID = 29758] 2. 1/9 [Option ID = 29759] 3. 2/3 [Option ID = 29760] 4. 5/6 [Option ID = 29761] Correct Answer :-• 4/9 [Option ID = 29758] 32) A card is drawn from a well-shuffled pack of 52 cards, then the probability of getting a heart or a king or a red card is: [Question ID = 7442] 1. 3/52 [Option ID = 29762] 2. 8/13 [Option ID = 29763] 3. 7/13 [Option ID = 29764] 4. 1/26 [Option ID = 29765] Correct Answer :-• 7/13 [Option ID = 29764] 33) For any two events G and H, which of the following hold true? [Question ID = 7443] 1. $P(G \square H) \leq P(G) \leq P(G \cup H) \leq P(G)+P(H)$ [Option ID = 29766] 2. $P(G) + P(H) \le P(G) \le P(G \cup H) \le P(G \square H)$ [Option ID = 29767] 3. $P(G \square H) \ge P(G) \ge P(G \cup H) \ge P(G)+P(H)$ [Option ID = 29768] 4. $P(\overline{G \square H}) \leq P(\overline{G \cup H}) \leq P(\overline{G}) \leq P(\overline{G}) + P(\overline{H})$ www.FirstRanker.com [Option ID = 29769]

Correct Answer :-

34) The odds that a book on Linear Algebra will be favourably reviewed by three reviewers are 3 to 2, 4 to 3 and 2 to 2 respectively. Then the probability that out of three reviews only one review will be unfavourable is: 12. 14715 (Dittoin 10 - 23770] 12. 14715 (Dittoin 10 - 23773] Correct Answer : • 70/175 (Dittoin 10 - 23773] 13. 175 (Dittoin 10 - 23773] 13. 17715 (Dittoin 10 - 23773] 13. 17715 (Dittoin 10 - 23773] 14. 175 (Dittoin 10 - 23773] 15. Non-Parametric analogous of One-Way ANOVA is: 12. Question 10 - 24745] 1. Friedmat test [Option 10 - 23774] 2. Million Signed Rank [Option 10 - 23775] 3. Kruskal-Wallis test [Option 10 - 23775] 3. Kruskal-Wallis test [Option 10 - 23776] 3. Wilcoxon Signed Rank [Option 10 - 23776] 3. Wilcoxon Signed Rank [Option 10 - 23776] 3. Wilcoxon Signed Rank [Option 10 - 23776] 3. Kruskal-Wallis test [Option 10 - 23776] 3. Kruskal-Wallis test [Option 10 - 23776] 3. Kruskal-Wallis test [Option 10 - 23776] 3. Gover values of regression coefficients are not possible [Option 10 - 23778] 3. Sign of one coefficient should have been in negative [Option 10 - 23778] 3. Sign of one coefficient should hav
Correct Answer :: • 70/175 [Option ID = 29772] 35) Non-Parametric analogous of One-Way ANOVA is: [Question ID = 7445] • Friedman test [Option ID = 29775] 3. Kruskal-Wallis test [Option ID = 29776] 4. Wilcoxon Signed Rank [Option ID = 29776] 36) If regression coefficients are given as b_{XY} = 3.2 and b_{YX} 9.3 Kruskal-Wallis test [Option ID = 29776] 36) If regression coefficients are given as b_{XY} = 3.2 and b_{YX} = 0.8 then [Question ID = 7446] 1. Given values of regression coefficients are not possible [Option ID = 29778] 2. Sign of one coefficient should have been in negative [Option ID = 29778] 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients are not possible [Option ID = 29781] Correct Answer :: • Given values of regression coefficients are not possible [Option ID = 29781]
 35) Non-Parametric analogous of One-Way ANOVA is: [Question ID = 7445] Friedman test [Option ID = 29774] Mann-Whitney test [Option ID = 29775] Kruskal-Wallis test [Option ID = 29776] 36) If regression coefficients are given as b_{XY} = 3.2 and b_{YX} = 0.8 then [Question ID = 7446] Given values of regression coefficients are not possible [Option ID = 29778] Sign of one coefficient should have been in negative [Option ID = 29779] Both coefficient should be greater than unity [Option ID = 29778] Both coefficients have correct values [Option ID = 2978] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 2978] Orgiton ID = 2978] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 2978] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 2978] The number of permutations of n distinct objects is: [Question ID = 29778]
Correct Answer :- • Kruskal-Wallis test [Option ID = 29776] 36) If regression coefficients are given as $b_{XY} = 3.2 \text{ and } b_{YX} = 0.8 \text{ then}$ [Question ID = 7446] 1. Given values of regression coefficients are not possible [Option ID = 29778] 2. Sign of one coefficient should have been in negative [Option ID = 29779] 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- • Given values of regression coefficients are not possible [Option ID = 29778]
 36) If regression coefficients are given as b_{XY} = 3.2 and b_{YX} = 0.8 then [Question ID = 7446] 1. Given values of regression coefficients are not possible [Option ID = 29778] 2. Sign of one coefficient should have been in negative [Option ID = 29779] 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]
[Question ID = 7446] 1. Given values of regression coefficients are not possible [Option ID = 29778] 2. Sign of one coefficient should have been in negative [Option ID = 29779] 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- • Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]
<pre>[Uption ID = 29778] 2. Sign of one coefficient should have been in negative [Option ID = 29779] 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- • Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]</pre>
 3. Both coefficient should be greater than unity [Option ID = 29780] 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]
 4. Regression coefficients have correct values [Option ID = 29781] Correct Answer :- Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]
Correct Answer :- • Given values of regression coefficients are not possible [Option ID = 29778] 37) The number of permutations of n distinct objects is: [Question ID = 7447]
37) The number of permutations of n distinct objects is: [Question ID = 7447]
1. $\frac{n!}{(n-n)!}$ 2. $\frac{[\text{Option ID} = 29782]}{\frac{n!}{(n-1)!}}$ 3. $\frac{1}{(n-1)!}$ [Option ID = 29783] 4. 1 [Option ID = 29785]
Correct Answer :- • $\frac{n!}{(n-n)!}$ [Option ID = 29782]
38) With the notation of combination, the value of $\binom{25}{1} + \frac{1}{5} \operatorname{X} \left[\binom{25}{24} \right] + 5 \operatorname{X} \left[\binom{49}{0} \right] \text{ is:}$
[Question ID = 7448] 1. 35
[Option ID = 29786] 2. 25 www.FirstRanker.com

stRanker.com tranker's choice www.FirstRanker.com www.FirstRanker.com [Option ID = 29789] Correct Answer :-• 35 [Option ID = 29786] 39) For Normal curve, the Quantile Deviation, Mean Deviation and Standard Deviation are in the ratio: [Question ID = 7449] 1. 10:15:12 [Option ID = 29790] 2. 03:04:05 [Option ID = 29791] 3. 10:12:15 [Option ID = 29792] 4. 12:05:17 [Option ID = 29793] Correct Answer :-• 10:12:15 [Option ID = 29792] 40) If $X \sim U(0,1)$ then $Y = -2\log(X)$ will follow [Question ID = 7450] 1. Log-normal [Option ID = 29794] 2. Exponential [Option ID = 29795] 3. Chi-square [Option ID = 29796] 4. Gamma [Option ID = 29797] Correct Answer :-• Chi-square [Option ID = 29796] 41) The arithmetic mean of two regression coefficient b_{XY} and b_{YX} is ______ the correlation coefficient between X and Y. [Question ID = 7451] 1. ≤ [Option ID = 29798] 2. ≥ [Option ID = 29799] 3. [Option ID = 29800] 4. > [Option ID = 29801] Correct Answer :-● ≥ [Option ID = 29799] 42) Let the equation of the regression lines be expressed as 2X - 3Y = 0 and 4Y - 5X = 8. Then the correlation coefficient between X and Y is: [Question ID = 7452] 8 1. 15 [Option ID = 29802] 2. 15/8 [Option ID = 29803] www.FirstRanker.com [Option ID = 29804] 4. 15/4

• 8/	www.FirstRanker.com	www.FirstRanker.com
15		
[Option ID = 29802]		
43) For Poisson distribution with para	meter μ , the value of measure of Skewness	and measure of Kurtosis are:
[Question ID = 7453]		
1. $\frac{1}{3}$ and $\frac{1}{\mu} + 3$		
[Option ID = 29806] 2. $\frac{1}{\mu}$ and $\frac{1}{\mu} + 3$		
[Option ID = 29807] 3. $\frac{1}{\mu}$ and $\frac{1}{\mu}$		
[Option ID = 29808] 4. μ and μ + 3		
[Option ID = 29809]		
Correct Answer :- • $\frac{1}{\mu}$ and $\frac{1}{\mu} + 3$		
[Option ID = 29807]		
[Question ID = 7454] 1. 2/3 [Option ID = 29810] 2. 1/4 [Option ID = 29811] 3. 1/6 [Option ID = 29812] 4. 1/2 [Option ID = 29813]		
Correct Answer :- • 1/4 [Option ID = 29811]		
45) Let A and B be events in a sampl [Question ID = 7455] 1. 1/4 [Option ID = 29814] 2. 5/6 [Option ID = 29815] 3. 1/6 [Option ID = 29816] 4. 2/3 [Option ID = 29817]	e space S such that P(A) = 1/2, P(B) = 1/2,	and P(A ^c U B ^c) = 1/3 then P(A U B ^c) is:
Correct Answer :-		
• 5/6 [Option ID = 29815]		
 46) Let A₁, A₂, A₃, A₄ be the events of 1/4, P(A₃) = 1/8, P(A₄) = 1/16, then F [Question ID = 7456] 1. 1023/1024 [Option ID = 29818] 2. 1/1024 [Option ID = 29819] 3. 709/1024 [Option ID = 29820] 	of answering the questions 1, 2, 3 and 4 resp $P(A_1 \cup A_2 \cup A_3 \cup A_4)$ is:	pectively such that $P(A_1) = 1/2$, $P(A_2)$
4. 4/511 [Uption ID = 29821]		
Correct Answer :- • 709/1024 [Option ID = 29820]		
47) Chi-square test CANNOT be appli	ed to test the :	
1. Goodness of fit [Option ID = 29822]		
2. Equality of two population variances [Optio	n ID = 29823]	
 significance of regression coefficient [Opti Independence of attributes [Option ID = 298] 	ט חט = 29824j 825]	

48) The coefficient of correlation between X and Y is 0.6. Their covariance is 4.8. If the variance of X is 9, then the

```
Ranker.com
      [Option ID = 29826]
                        's choice
                                             www.FirstRanker.com
                                                                                    www.FirstRanker.com
2. 5.23 [Option ID = 29827]
3. 7.12 [Option ID = 29828]
4. 2.67 [Option ID = 29829]
Correct Answer :-
• 2.67 [Option ID = 29829]
                                                               49) Observe the following statements:
i. University roll number is measured in nominal scale
ii. Marks obtained is measured in interval scale
iii. Number of students admitted in the University during 2019-20 is cross-sectional data
iv. University T shirt size measured in nominal scale
Which of the above statements given above is/are true?
[Question ID = 7459]
1. i. Only
  [Option ID = 29830]
2. i. and ii. Only
  [Option ID = 29831]
3. iii. Only
  [Option ID = 29832]
4. All are true
  [Option ID = 29833]
Correct Answer :-
• i. and ii. Only
  [Option ID = 29831]
                            _____
50) The joint probability function of two discrete random variables X and Y is given by f(x,y) = c(2x + y), where x and y
can assume all integers such that 0 \le x \le 2, 0 \le y \le 3, and f(x, y) = 0 otherwise. Then P(Y = 1 | X = 2) is
[Question ID = 7460]
1. 5/42
  [Option ID = 29834]
2, 5/22
  [Option ID = 29835]
3. 4/7
  [Option ID = 29836]
4. 5/53
  [Option ID = 29837]
Correct Answer :-
• 5/22
  [Option ID = 29835]
```