Firstranker's choice il Phd www. Fatstrankericom

www.FirstRanker.com

Topic: - MATHS MPHIL S2

1) Which of the following societies awards the Fields Medal?

[Question ID = 10202]

1- International Mathematical Union

[Option ID = 40802]

2- American Mathematical Society

[Option ID = 40803]

3- European Mathematical Society

[Option ID = 40804]

4- International Mathematical Society for Outstanding Research

[Option ID = 40806]

Correct Answer :-

International Mathematical Union

[Option ID = 40802]

2) Which of the following mathematicians won the famous Abel Prize for 2019 on the work of analysis, geometry and mathematical physics?

[Question ID = 10205]

Robert Langlands

[Option ID = 40813]

Karen Uhlenbeck

[Option ID = 40814]

Louis Nirenberg

[Option ID = 40816]

4. S.R. Srinivasa Varadhan

[Option ID = 40817]

Correct Answer :-

Karen Uhlenbeck

[Option ID = 40814]

Which of the following Journals/Magazines/Newsletters is published in India

[Question ID = 10206]

The Mathematics Student

[Option ID = 40818]

2. The College Mathematics Journal

[Option ID = 40820]

3. Mathematics Magazine

[Option ID = 40821]

4. Involve

[Option ID = 40823]

Correct Answer :-

The Mathematics Student

[Option ID - 40818]

4) Which of the following mathematicians is not a recipient of author britishan, the third highest civilian honor in India?

www.FirstRanker.com

[Option ID = 40828]

2. M.S. Narasimhan

[Option ID = 40830]

3. S.R. Srinivasa Vardhan

[Option ID = 40832]

4- Akshay Venkatesh

[Option ID = 40833]

Correct Answer :-

Akshay Venkatesh

[Option ID = 40833]

5) Which mathematician of the post-christian era wrote the mathematical treatise 'Ganita Sara Sangraha'?

[Question ID = 10210]

1. Mahavira

[Option ID = 40834]

Sridharacharya

[Option ID = 40835]

Brahmagupta

[Option ID = 40836]

Varahamihira

[Option ID = 40837]

Correct Answer :-

Mahavira

[Option ID = 40834]

6) Let T be the set of square free positive integers i.e. the set of positive integers not divisible by any square larger than 1. Assuming that any positive integer can be written as $n=m^2k$, $k\in T$, $m\in\mathbb{N}$, the value of $\sum_{k\in T}\frac{1}{k^2}$ is equal to

[Question ID = 10211]

1.
$$\frac{\pi^2}{16}$$

[Option ID = 40838]

[Option ID = 40839]

3.
$$\frac{16}{\pi^2}$$

[Option ID = 40840]

[Option ID = 40841]

Correct Answer :-

[Option ID = 40841]

7) Which of the following statements is true?

[Question ID = 10212]

 $f(x) = \frac{1}{x}$ is uniformly continuous on (2,3)

[Option ID = 40842]

www.FirstRanker.com

^{2.} $f(x) = x^2$ is uniformly continuous on $[2, +\infty)$.

www.FirstRanker.com

4. $f(x) = e^{-x^2}$ is uniformly continuous on $(-\infty, +\infty)$.

[Option ID = 40845]

Correct Answer :-

f(x) = e^{-x²} is uniformly continuous on (-∞,+∞).

[Option ID = 40845]

8) Applying term wise differentiation or otherwise, the value of $\sum_{n=1}^{\infty} \frac{2^n n^2}{n!}$ is

[Question ID = 10213]

1. 6e2

[Option ID = 40846]

2. 4e2

[Option ID = 40847]

[Option ID = 40848]

4. 6e

[Option ID = 40849]

Correct Answer :-

• 6e2

[Option ID = 40846]

9) Which of the following statements is true?

[Question ID = 10214]

1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and the series $\sum_{n=1}^{\infty} b_n$ diverges, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

[Option ID = 40850]

2. If $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} |a_n| = B$, A and B are finite then |A| = B.

[Option ID = 40851]

3. If the series $\sum_{n=1}^{\infty}a_n$ diverges and $a_n>0$, then the series $\sum_{n=1}^{\infty}\frac{a_n}{1+a_n}$ also diverges.

[Option ID = 40852] 4. The series $\sum_{n=1}^{\infty} \frac{n+1}{n+5}$ converges to $\frac{1}{5}$.

[Option ID = 40853]

Correct Answer :-

• If the series $\sum_{n=1}^{\infty} a_n$ diverges and $a_n > 0$, then the series $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ also diverges.

[Option ID = 40852]

10) The value of $\int_{C} (2xy - x^2) dx + (x + y^2) dy$, where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$ is

[Question ID = 10215]

1. 1 30

[Option ID = 40854]

2. 1

[Option ID = 40855]

[Option ID = 40854]

11) Let A(2,5) be rotated by an angle of $\frac{\pi}{s}$ then the coordinates of the resulting point is

[Question ID = 10216]

1.
$$\left(1 + \frac{5\sqrt{3}}{2}, \sqrt{3} - \frac{5}{2}\right)$$

[Option ID = 40858]

2.
$$\left(1 - \frac{5\sqrt{3}}{2}, \sqrt{3} - \frac{5}{2}\right)$$

[Option ID = 40859]

$$3.\left(1-\frac{5\sqrt{3}}{2},\sqrt{3}+\frac{5}{2}\right)$$

[Option ID = 40860]

4.
$$\left(1 + \frac{5\sqrt{3}}{2}, \sqrt{3} + \frac{5}{2}\right)$$

[Option ID = 40861]

Correct Answer :-

•
$$(1+\frac{5\sqrt{3}}{2},\sqrt{3}+\frac{5}{2})$$

[Option ID = 40861]

12) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a length preserving linear transformation. Suppose that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the matrix corresponding to T. Which of the following relations is false?

[Question ID = 10217]

1.
$$a^2 + c^2 = 1$$

2.
$$b^2 + d^2 = 1$$

[Option ID = 40863]

$$ab + cd = 0$$

4.
$$ab + cd = 1$$

[Option ID = 40865]

Correct Answer :-

$$ab + cd = 1$$

[Option ID = 40865]

13) Let T: V → W be a nonsingular linear transformation of a finite dimensional vector space V to any vector space W.
Which of the following is true?

[Question ID = 10218]

dim V = Rank of T

-{Option ID - 40869}

Correct Answer :-

t Files Franker's schoolseever a field F of characteristic 0. Which of the following statements is true?

[Question ID = 10219]

If F = R then A has nonzero eigenvalues.

[Option ID = 40870]

If F = R then A is diagonalizable

[Option ID = 40871]

3. If F = C then A has real eigenvalues

[Option ID = 40872]

If F = C then A is diagonalizable

[Option ID = 40873]

Correct Answer :-

If F = C then A is diagonalizable

[Option ID = 40873]

15) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by

$$T(x,y) = (2x-7y, 4x + 3y).$$

The matrix of T with respect to the ordered basis $\mathcal{B} = \{(1,3),(2,5)\}$ is

[Question ID = 10220]

[Option ID = 40877]

Correct Answer :-

• [121 201 -70 -116]

[Option ID = 40874]

16) Let f be a bounded Lebesgue measurable function on $[\pi, 3\pi]$. Then $\lim_{x \to 0} \int_{x}^{3\pi} f(x) \sin nx \, dx$

[Question ID = 10221]

may not exist

[Option ID = 40878]

2. exists and is equal to 1

[Option ID = 40879]

3. exists and is equal to 0

[Option ID = 40880]

exists and is equal to 2

[Option ID = 40881]

Correct Answer :-

exists and is equal to 0

[Option ID = 40880]

17) Let
$$A = \left\{x \in (0,1) : \sin\left(\frac{1}{x}\right) = 0\right\}$$
 and $f : [W,Y,W,FirstRanker.com]$

$$f(x) = \left\{\frac{1}{\sin(\frac{1}{x})}, \text{ if } x \in (0,1) - A,\right\}$$

www.FirstRanker.com

[Question ID = 10222]

f is not Lebesgue measurable

[Option ID = 40882]

2. f is Lebesgue measurable but |f| is not Lebesgue measurable

[Option ID = 40883]

3. f is Lebesgue measurable but not Lebesgue integrable on [0,1]

[Option ID = 40884]

f is Lebesgue integrable on [0,1]

[Option ID = 40885]

Correct Answer :-

f is Lebesgue integrable on [0,1]

[Option ID = 40885]

18) Let $z = x + iy \in \mathbb{C}$ and

$$f(z) = \begin{cases} \frac{x^{3}(1+i) - y^{3}(1-i)}{x^{2} + y^{2}}, & \text{if } z \neq 0, \\ 0, & \text{otherwise} \end{cases}$$

If f(z) = u(x, y) + iv(x, y), then at origin

[Question ID = 10223]

u and v do not satisfy Cauchy Riemann equations but f is differentiable

[Option ID = 40886]

2. u and v do not satisfy Cauchy Riemann equations and f is not differentiable

[Option ID = 40887]

3. u and v satisfy Cauchy Riemann equations but f is not differentiable

[Option ID = 40888]

4- u and v satisfy Cauchy Riemann equations and f is differentiable

[Option ID = 40889]

Correct Answer :-

u and v satisfy Cauchy Riemann equations but f is not differentiable

[Option ID = 40888]

19) The value of the integral $\int_{\mathcal{C}} \frac{e^{zz}}{(z-1)(z-2)} dz$ where \mathcal{C} is the anticlockwise circle |z|=3 is

[Question ID = 10224]

1.
$$2\pi(e^2 + 2e^4)i$$

[Option ID = 40890]

2. $2\pi(e^4 - e^2)i$

[Option ID = 40891]

3. $2\pi(e^2 - e^4)i$

[Option ID = 40892]

4. $2\pi(e^2-2e^4)i$

[Option ID = 40893]

Correct Answer :-

2π(e⁴ − e²)i

www.FirstRanker.com

For $n \in \mathbb{N}$, let $z_n = (-1)^n$ and $w_n = \begin{cases} \frac{1}{n}, & \text{if } n \text{ is even,} \end{cases}$

 $g(\frac{1}{r}) = w_n$ for all $n \in \mathbb{N}$. Then on G

www.FirstRanker.com

www.FirstRanker.com

[Question ID = 10225]

f can be chosen to be analytic but g cannot be analytic

[Option ID = 40894]

g can be chosen to be analytic but f cannot be analytic

[Option ID = 40895]

Neither f nor g can be analytic

[Option ID = 40896]

4- Both f and g can be chosen to be analytic

[Option ID = 40897]

Correct Answer :-

Neither f nor g can be analytic

[Option ID = 40896]

21) Let $f(z) = a_0 + a_1 z + \dots + a_{20} z^{20}$, $z \in \mathbb{C}$ be such that $|f(z)| \le 1$, for $|z| \le 1$. Then for all $n = 1, 2, \dots, 20$,

[Question ID = 10226]

|a_n| ≤ 1 and f is a constant

[Option ID = 40898]

2. $|a_n| \le 1$ but f need not be a constant

[Option ID = 40899]

1 < |a_n| < n but f need not be a constant

[Option ID = 40900]

4. $1 < |a_n| < n$ and f is a constant

[Option ID = 40901]

Correct Answer :-

|a_n| ≤ 1 but f need not be a constant

[Option ID = 40899]

22) Let \$ be compact subset of a metric space. Then,

[Question ID = 10227]

S is complete and totally bounded

[Option ID = 40902]

s is complete but need not be totally bounded

[Option ID = 40903]

3. S is totally bounded but need not be complete

[Option ID = 40904]

4. S is totally bounded but 5 need not be totally bounded

[Option ID = 40905]

Correct Answer :-

s is complete and totally bounded

[Option ID = 40902]

23) Which of the following statements is false?

[Question ID = 10228]

1. The connected subsets of R, with the usual nwww.FirstRanker.com

[Option ID = 40906]

The real line R and the Euclidean plane R2 are not homeomorphic

If B⊆R is bounded and f:R→R is continuous on B then f(B) is bounded

[Option ID = 40909]

Correct Answer :-

If B ⊆ R is bounded and f : R → R is continuous on B then f(B) is bounded

[Option ID = 40909]

24) Let {X_α : α ∈ Λ} be a family of topological spaces. Which of the following statements is false?

[Question ID = 10229]

Product topology on ∏_{a∈A} X_a is finer than the box topology on ∏_{a∈A} X_a

[Option ID = 40910]

2. If $\prod_{\alpha \in \Lambda} X_{\alpha}$ has product topology and $E_{\alpha} \subseteq X_{\alpha}$ then $\overline{\prod_{\alpha \in \Lambda} E_{\alpha}} = \prod_{\alpha \in \Lambda} \overline{E_{\alpha}}$.

[Option ID = 40911]

If each X_a is completely regular then \(\Pi_{\alpha \in A} X_{\alpha}\) under product topology is completely regular

[Option ID = 40912]

4. If B_α is a basis for X_α then the family of sets Π_{α∈Λ} B_α, B_α ∈ B_α is a basis for Π_{α∈Λ} X_α under box topology

[Option ID = 40913]

Correct Answer :-

Product topology on Π_{σ∈A} X_σ is finer than the box topology on Π_{σ∈A} X_σ

[Option ID = 40910]

25) Which of the following statements is false?

[Question ID = 10230]

The open continuous image of a first countable space is first countable.

[Option ID = 40914]

The space R₂ (R with lower limit topology) is separable but not second countable.

Let X and Y be topological spaces, $f: X \to Y$ be such that $x_n \to x$ in X implies $f(x_n) \to f(x)$ in Y, then f is continuous.

[Option ID = 40916]

Both axioms of first countability and second countability are hereditary.

[Option ID = 40917]

Correct Answer :-

Let X and Y be topological spaces, $f: X \to Y$ be such that $x_n \to x$ in X implies $f(x_n) \to f(x)$ in Y, then f is continuous.

[Option ID = 40916]

26) Which of the following statements is false?

[Question ID = 10231]

All the cubes, spheres and discs are compact in Rⁿ.

[Option ID = 40918]

For a metric space (X,d) and $x \in X$,

 $\{y \in X : d(x,y) < r\} = \{y \in X : d(x,y) \le r\}.$

[Option ID = 40919]

If (A_n)_{n∈N} is a sequence of nowhere dense sets in a complete metric space X then X ≠ U_{n∈N}A_n.

4. Any continuous function from [a, b] to R is IMWW.FirstRanker.com;ent sequence of polynomials.

[Option ID = 40921]

Firstranker $choice_{x,y} \le r$ www.FirstRanker.com

[Option ID = 40919]

27) Which of the following statements is false?

[Question ID = 10232]

1- The space of all real valued continuous functions on [a, b] under supremum norm is separable.

[Option ID = 40922]

Every subset of the Euclidean space Rⁿ is separable.

[Option ID = 40923]

3. Every compact metric space is separable.

[Option ID = 40924]

4. A closed subspace of a separable topological space is separable.

[Option ID = 40925]

Correct Answer :-

A closed subspace of a separable topological space is separable.

[Option ID = 40925]

28) Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be two normed spaces. For $(x, y) \in X \times Y$ define $\|(x, y)\|_1 = \|x\|_X + \|y\|_Y$;

$$\|(x,y)\|_2 = (\|x\|_X^{-1/2} + \|y\|_Y^{-1/2})^2 : \|(x,y)\|_2 = (\|x\|_X^{-3} + \|y\|_Y^{-3})^{1/3}$$

Consider the following statements:

a. ||. ||, defines a norm on X x Y .

b. ||. || defines a norm on X x Y .

c. ||. || defines a norm on X x Y .

Which of the following options is correct?

[Question ID = 10233]

1. Only a) and b) are correct.

[Option ID = 40926]

2. Only a) and c) are correct.

[Option ID = 40927]

3. Only b) and c) are correct.

[Option ID = 40928]

4- None of a), b) and c) is correct.

[Option ID = 40929]

Correct Answer :-

. Only a) and c) are correct.

[Option ID = 40927]

29) For a normed space X consider the following statements:

- a. For a sequence $(x_n)_{n\in\mathbb{N}}$ in X if $\sum_{n=1}^{\infty}||x_n||<\infty$, then the series $\sum_{n=1}^{\infty}x_n$ converges in X.
- b. If X is complete and for a sequence $(x_n)_{n \in \mathbb{N}}$ in X if $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then the series $\sum_{n=1}^{\infty} x_n$ converges in X.
- c. If $\sum_{n=1}^{\infty} ||x_n|| < \infty$ implies the series $\sum_{n=1}^{\infty} x_n$ converges for any sequence $(x_n)_{n \in \mathbb{N}}$ in X, then X is complete.
- d. For a sequence $(x_n)_{n\in\mathbb{N}}$ in X if the series $\sum_{n=1}^{\infty} x_n$ converges in X, then $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Which of the following options is correct?

Question ID = 10234]

1. Only a) and b) are correct.

www.FirstRanker.com

[Option ID = 40932]

Only b) and d) are correct.

[Option ID = 40933]

Correct Answer :-

Only b) and c) are correct.

[Option ID = 40931]

30) For a normed space X let X** denote the second dual of X. Consider the following statements:

a. Co " ≈ l

b. 12 ** 8 12.

c. l1 ** ≈ C0 .

d. 14" & 14/3-

(C_p being the space of all sequences converging to 0 and l_p ($p \ge 1$) the sequence space of p-summable sequences).

Which of the following options is correct?

[Question ID = 10235]

Only a) and c) are correct.

[Option ID = 40934]

2. Only a) and b) are correct.

[Option ID = 40935]

3. Only b) and d) are correct.

[Option ID = 40936]

Only c) and d) are correct.

[Option ID = 40937]

Correct Answer :-

Only a) and b) are correct.

[Option ID = 40935]

31) Let $H = L^2[0,2\pi]$ and $B = \{\frac{1}{\sqrt{2\pi}}e_n : n \in \mathbb{Z}\}$, where $e_n(t) = e^{int}$, $t \in [0,2\pi]$.

Consider the following statements:

a. B is a Hamel basis for H.

b. B is an orthonormal set in H.

c. B is a complete orthonormal set in H.

d. H is not separable.

Which of the following options is correct?

[Question ID = 10236]

Only a) is correct.

[Option ID = 40938]

2- Only b) and d) are correct.

[Option ID = 40939]

Only b) and c) are correct.

[Option ID = 40940]

4. Only c) and d) are correct.

-{Option ID - 40941}

Correct Answer :-

· Only b) and c) are correct.

t foirstrankerburghouses ⊆ 6 be such that [4] + [8] > [6] (where [4]) denotes the number of elements of A www.FirstRanker.com

). Then $A.B = \{a.b : a \in A, b \in B\}$ is

[Question ID = 10237]

a proper subgroup of G.

[Option ID = 40942]

not a subgroup of A.

[Option ID = 40943]

equal to G.

[Option ID = 40944]

4. |A. B| < |G|.</p>

[Option ID = 40945]

Correct Answer :-

equal to G.

[Option ID = 40944]

33) Let f, g and h be polynomials over \mathbb{Q} given by $f(x) = x^n + n$, where n is a positive integer, $g(x) = x^5 - 5x - 2$ and $h(x) = x^4 - 2x^2 + 1$. Which of the following statements is true?

[Question ID = 10238]

Only f(x) and g(x) are irreducible over 0.

[Option ID = 40946]

Only g(x) and h(x) are irreducible over Q.

[Option ID = 40947]

Only f(x) and h(x) are irreducible over Q.

[Option ID = 40948]

All of f(x),g(x) and h(x) are irreducible over Q.

[Option ID = 40949]

Correct Answer :-

Only f(x) and g(x) are irreducible over Q.

[Option ID = 40946]

- 34) For any pair of real numbers a(a ≠ 0) and b, define a function f_{a,b}: R → R by f_{a,b}(x) = ax + b. Consider the following statements:
 - a. The function f_{ab} is a permutation of \mathbb{R}

b. $f_{ab} \circ f_{cd} = f_{ac,ad+b}$

c. $G = \{f_{a,b} : a \in \mathbb{R} \sim \{0\}, b \in \mathbb{R}\}$ forms a group under composition.

Which of the following options is correct?

[Question ID = 10239]

Only a) and b) are correct.

[Option ID = 40950]

Only a) and c) are correct.

[Option ID = 40951]

3. All of a), b) and c) are correct.

[Option ID = 40952]

Only b) and c) are correct.

[Option ID = 40953]

Correct Answer:

· All of a), b) and c) are correct.

[Option ID = 40952]

www.FirstRanker.com

1. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}\$

[Option ID = 40954]

2. $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$

[Option ID = 40955]

3. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$

[Option ID = 40956]

Q[i] = {a + bi : a, b ∈ Q}

[Option ID = 40957]

Correct Answer :-

• $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$

[Option ID = 40955]

36) How many irreducible quadratics (degree 2) are there over a finite field having n elements?

[Question ID = 10241]

1.
$$n^2(n+1)$$

2.
$$n(n-1)^2$$

[Option ID = 40959]

3.
$$\frac{n^2(n-1)}{2}$$

[Option ID = 40960]

4.
$$n(n-1)^2$$

[Option ID = 40961]

Correct Answer :-

•
$$\frac{n^2(n-1)}{2}$$

[Option ID = 40960]

37) Which of the following vector spaces has dimension not divisible by 2?

[Question ID = 10242]

1. A plane passing through origin in R3 over R.

[Option ID = 40962]

The set P₃ of all polynomials over ℝ of degree ≤ 3

[Option ID = 40963]

Z₁ ⊕ Z₂ over Z₃.

[Option ID = 40964]

Z₂ ⊕ Z₂ ⊕ Z₂ over Z₂.

[Option ID = 40965]

Correct Answer :-

Z₂ ⊕ Z₂ ⊕ Z₂ over Z₂.

[Option ID = 40965]

38) Let L be the line passing through the origin and (1,1) in R². Let T: R²→ R² be a linear transformation defined by T(x,y) = projection of (x,y) on L.

www.FirstRanker.com

2. 0 and 1.

[Option ID = 40967]

3. 0 and 1.

[Option ID = 40968]

4. 1 and 1.

[Option ID = 40969]

Correct Answer :-

0 and 1.

[Option ID = 40967]

39) A particular integral of the partial differential equation

$$\left(\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} - 2\right)^2 z = e^{2x} \sin(y + 3x)$$

is

[Question ID = 10244]

1.
$$\frac{1}{2}x^2e^{2x}\sin(y+3x)$$

2.
$$\frac{1}{2}xe^{2x}\cos(y+3x)$$

3.
$$\frac{1}{2}x^3e^{2x}\sin(y+3x)$$

4.
$$\frac{1}{2}xe^{2x}[\sin(y+3x)+\cos(y+3x)]$$

[Option ID = 40973]

Correct Answer :-

•
$$\frac{1}{2}x^2e^{2x}\sin(y+3x)$$

[Option ID = 40970]

40) The partial differential equation

$$x(y-z)\frac{\partial z}{\partial x} + y(z-x)\frac{\partial z}{\partial y} = z(x-y)$$

has general solution (with arbitrary function@)

[Question ID = 10245]

$$^{1.} \varphi(x+y+z,xyz)=0.$$

[Option ID = 40974]
2.
$$\varphi\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}, xyz\right) = 0$$

3.
$$\varphi(x^2 + y^2, xyz) = 0$$
.

4.
$$\varphi(x^3 + y^3 + x + y, xyz) = 0$$
.

[Option ID = 40977]

Correct Answer :-

• $\varphi(x+y+z,xyz)=0.$

www.FirstRanker.com

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin(\log(1+x))$$

is (with arbitrary constants c_1 and c_2)

[Question ID = 10246]

1.
$$c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) + \log(1+x) \sin(\log(1+x))$$

[Option ID = 40978]

2.
$$c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) - \log(1+x) \cos(\log(1+x))$$

[Option ID = 40979]

3.
$$c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) + \log(1+x)$$

[Option ID = 40980]

4.
$$(c_1 + c_2 \log(1+x))\cos(\log(1+x)) - \log(1+x)\sin(\log(1+x))$$

[Option ID = 40981]

Correct Answer :-

•
$$c_1 \cos(\log(1+x)) + c_2 \sin(\log(1+x)) - \log(1+x) \cos(\log(1+x))$$

[Option ID = 40979]

42) For the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad y(0) = 0,$$

which of the following statements is true?

[Question ID = 10247]

1. $f(x,y) = \sqrt{y}$ satisfies Lipschitz condition and the above problem has a unique solution.

[Option ID = 40982]

2. f(x,y) = y^{2/3} satisfies Lipschitz condition and the above problem has a unique solution.

[Option ID = 40983]

3. $f(x,y) = x^2|y|$, the above problem has a unique solution.

[Option ID = 40984]

^{4.} $f(x,y) = e^y$, the above problem has at least two solutions.

[Option ID = 40985]

Correct Answer :-

f(x,y) = x²|y|, the above problem has a unique solution.

[Option ID = 40984]

43) The solution of the initial boundary value problem

$$u_{tt} - c^2 u_{xx} = 0$$
, $0 < x < L$, $t > 0$,

$$u_x(0,t) = x$$
, $u_x(L,t) = 0$,

$$u(x,0) = x,$$
 $u_{*}(x,0) = 0,$

ie

[Question ID = 10248]

1.
$$u(x,t) = \frac{L}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{L} \left(\frac{L}{n\pi} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right]$$

[Option ID = 40986]

$$u(x,t) = L + \sum_{n=1}^{\infty} \left[L \left(\frac{L}{n\pi} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{\text{www.F}} \right] \text{ irstRanker.com}$$

[Option ID = 40987]

www.FirstRanker.com

4.
$$u(x,t) = \frac{2}{L} + \sum_{n=1}^{\infty} \left[\frac{L}{2} \left(\frac{n\pi}{L} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right]$$

[Option ID = 40989]

Correct Answer :-

•
$$u(x,t) = \frac{L}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{L} \left(\frac{L}{n\pi} \right)^2 ((-1)^n - 1) \cos \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \right]$$

[Option ID = 40986]

44) The solution of the differential equation $uu_t + u_x = -u$, $u(0,t) = \alpha t$,

where α is a constant, is

[Question ID = 10249]

$$1. u(x,t) = \frac{t\alpha e^x}{1 + \alpha - \alpha e^{-x}}$$

[Option ID = 40990]

$$u(x,t) = \frac{t\alpha e^{-x}}{1 - \alpha + \alpha e^{-x}}.$$

[Option ID = 40991]

$$u(x,t) = \frac{t\alpha e^{-x}}{1 + \alpha - \alpha e^{-x}}$$

[Option ID = 40992]

$$4. \ u(x,t) = \frac{t\alpha e^x}{1 - \alpha + \alpha e^{-x}}.$$

[Option ID = 40993]

Correct Answer :-

•
$$u(x,t) = \frac{t\alpha e^{-x}}{1 + \alpha - \alpha e^{-x}}$$

[Option ID = 40992]

45) The eigen values $\lambda_{_{\rm H}}$ and the eigen functions $\varphi_{_{\rm H}}$ of the Sturm-Liouville problem

$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \lambda y = 0, \qquad 1 \le x \le \epsilon,$$

$$y(1) = 0, y(e) = 0,$$

are given by

[Question ID = 10250]

1.
$$\lambda_n = n^2$$
, $\varphi_n(x) = \sin(\log x)$, $n = 1,2,3...$

[Option ID = 40994]

2.
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \cos(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40995]

3.
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \sin(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40996]

4.
$$\lambda_n = n^2$$
, $\varphi_n(x) = \cos(\log x)$, $n = 1,2,3...$

[Option ID = 40997]

Correct Answer :-

•
$$\lambda_n = n^2 \pi^2$$
, $\varphi_n(x) = \sin(n\pi \log x)$, $n = 1,2,3...$

[Option ID = 40996]

46) The general solution of the Laplace equatiqueww.FirstRanker.com

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
, $0 \le r < a$, $0 < \theta \le 2\pi$

www.FirstRanker.com

[Question ID = 10251]

1.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

[Option ID = 40998]
2.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

[Option ID = 40999]
$$3. \ u(r,\theta) = \frac{a_0}{2} + \sum\nolimits_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \left(a_n e^{n\theta} + b_n e^{-n\theta}\right).$$

[Option ID = 41000]
4.
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n \left(a_n e^{n\theta} + b_n e^{-n\theta}\right).$$

[Option ID = 41001]

Correct Answer :-

•
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (a_n \cos n\theta + b_n \sin n\theta).$$

[Option ID = 40998]

47) Consider the motion of an incompressible inviscid fluid moving under an arbitrary body force \$\vec{F}\$ per unit mass with velocity \vec{q} . The generation of vorticity \vec{w} is given by

[Question ID = 10252]

1.
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{w} + \text{curl } \vec{F}$$
.

[Option ID = 41002]
2.
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{F} + \vec{w}.$$

3.
$$\frac{d\vec{w}}{dt} = (\vec{w}. \vec{\nabla})\vec{q} + \text{curl } \vec{F}.$$

[Option ID = 41004]
4.
$$\frac{d\vec{w}}{dt} = \vec{q} + \vec{F}$$
.

[Option ID = 41005]

Correct Answer :-

•
$$\frac{d\vec{w}}{dt} = (\vec{w}.\vec{\nabla})\vec{q} + \text{curl } \vec{F}$$
.

[Option ID = 41004]

48) The Navier-Stokes equation for steady, viscous incompressible flow under no body force with \vec{q} as velocity, \vec{w} as vorticity vector, p as pressure, ρ as density, v as viscosity, may be developed in the form

[Question ID = 10253]

1.
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2}q^2 + \frac{p}{\rho}\right) + \nu \operatorname{curl} \vec{w}$$
.

2.
$$\vec{q} \times \vec{w} = \nu \operatorname{curl} \vec{q}$$
.

$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2}q^2 + \frac{p}{\rho}\right) + \text{curl } \vec{w}.$$

[Option ID = 41008]
4.
$$\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2}w^2 + \frac{p}{\rho}\right) + \text{curl } \vec{q}$$
.

Correct Answer :

• $\vec{q} \times \vec{w} = \nabla \left(\frac{1}{2}q^2 + \frac{p}{a}\right) + \nu \operatorname{curl} \vec{w}$.

FirstRanker.com

velocity is -ui, where u is a constant. Then the velocity component for $r \ge a$ is given by

[Question ID = 10254]

¹·
$$q_{\theta} = U \sin \theta \left(1 + \frac{a^3}{2r^3}\right)$$
.

[Option ID = 41010]

2.
$$q_{\theta} = U \sin \theta \left(1 - \frac{a^3}{2r^2}\right)$$
.

[Option ID = 41011]

3.
$$q_x = -U \sin \theta$$
.

4.
$$q_r = 0$$
.

[Option ID = 41013]

Correct Answer :-

•
$$q_{\theta} = U \sin \theta \left(1 + \frac{a^3}{2r^3}\right)$$
.

[Option ID = 41010]

50) Let R be a commutative ring with unity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. Then f(x) is a unit in R[x] if and only if

[Question ID = 10255]

a₀ is a unit and a_i (1 ≤ i ≤ n) are nilpotents in R.
[Option ID = 41014]

2. $a_i \ (0 \le i \le n)$ are units in R.

[Option ID = 41015]

3. $a_i (0 \le i \le n)$ are nilpotents in R. [Option ID = 41016]

4. $a_i \ (0 \le i \le n)$ are zero divisors in R.

[Option ID = 41017]

Correct Answer :-

• a_0 is a unit and a_i ($1 \le i \le n$) are nilpotents in R.

[Option ID = 41014]

un'i