irstKar Firstranker's choice DU MPhil PhDwwwsEastBanker.com www.FirstRanker.com Topic:- STATS MPHIL S2 A fraction non-conforming control chart with n=400 has the following parameters; UCL=0.0809, CL=0.05, LCL=0.0191. The corresponding parameters for an equivalent control chart based on the number non conforming are [Ouestion ID = 4266] 1. (5.92, 32.08) [Option ID = 17058] 2. (6.92, 33.08) [Option ID = 17059] 3. (7.92, 34.08) [Option ID = 17060] 4. (8.92, 35.08) [Option ID = 17061] Correct Answer :- (6.92, 33.08) [Option ID = 17059] 2) In an abridged life table, functions are computed for [Question ID = 4267] 1. Each year of age [Option ID = 17062] 2. Age intervals greater than one year [Option ID = 17063] 3. From birth till the death of last member of the group [Option ID = 17064] 4. None of these [Option ID = 17065] Correct Answer :- Age intervals greater than one year [Option ID = 17063] 3) Suppose that a parallel system with identical components has an overall reliability of 0.98. If each component has reliability of 0.25, then the minimum number of components in the system will be [Question ID = 4268] 1. 12 [Option ID = 17066] 2. 13 [Option ID = 17067] 3. 14 [Option ID = 17068] 4. 15 [Option ID = 17069] Correct Answer :- 14 [Option ID = 17068] 4) The reliability of a series system decreases with [Question ID = 4269] 1. A decrease in the number of its components [Option ID = 17070] 2. An increase in the number of its components [Option ID = 17071] 3. Same number of its components [Option ID = 17072] 4. None of these [Option ID = 17073] Correct Answer :- An increase in the number of its components [Option ID = 17071]

 If a manufacturing process produces a large number of non-conforming units, then the process capability is [Question ID = 4270]

1. Less than one [Option ID = 17074]

Greater than one [Option ID = 17075]
 Equal to one [Option ID = 17076]

Equal to zero [Option ID = 17077]

www.FirstRanker.com

 Octal equivalent of [Question ID = 4271] 	r's choice binary number 1100000 WWW.FirstRanker.com	www.FirstRanker.com
1. 192 [Option ID = 4271]		
 300 [Option ID = 17079] 		
071 [Option ID = 17080]		
 301 [Option ID = 17081] 		
Correct Answer :-		
 300 [Option ID = 17079] 		
7) Converted value of	(53)s to Base 10 is :	
[Question ID = 4272]		
 43 [Option ID = 17082] 		
 63 [Option ID = 17083] 64 [Option ID = 17084] 		
 4. 42 [Option ID = 17084] 		
Correct Answer :-		
 43 [Option ID = 17082] 		
Researches that are	e being conducted to study the Novle Coronavirus will be te	rmed as:
[Question ID = 4273]		
1. action research		
(0-N ID - 17094)		
[Option ID = 17086] 2. applied research		
[Option ID = 17087] 3. longitudinal research		
[Option ID = 17088] 4. empirical research		
[Option ID = 17089]		
[Obtion ID = 11094]		
Correct Answer :-		
 action research 		
[Option ID = 17086]		
9) Ex post facto resea	inch refers to :	
<i>,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		
[Question ID = 4274]		
1. descriptive research		
[Option ID = 17090]		
 fundamental research 		
[Option ID = 17091]		
 analytical research 		
[Option ID = 17092]		
 empirical research 		
[Option ID = 17093]		
Correct Answer :-		
 descriptive research 		
[Option ID = 17090]		
[option in - 17030]		
	rch uses the principles of :	
[Question ID = 4275]		
1. Action research [Option		
 Fundamental research [0 Philosophical research [0 		
 Historical research [Opti 		
Correct Answer :-		
 Fundamental research [0 	ation ID = 170951	
 Pundamental research IL 		

earthquakes occur dur [Question ID = 4276] FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Correct Answer :- 12e⁻⁴ [Option ID = 17098] 12) The number of marriages that remain intact when there are a total of m deaths among the N married couples are [Question ID = 4277] 1. {(2N-m) (2N-m+2)]/ (2N-1) [Option ID = 17102] {(2N-m) (2N-m-1)}/ (2N-1) [Option ID = 17103] 3. {2(2N-m) (2N-m-1)}/ (2N-1) [Option ID = 17104] 4. {(2N-m) (2N-m-1)}/{2 (2N-1)} [Option ID = 17105] Correct Answer :- {(2N-m) (2N-m-1)}/{2 (2N-1)} [Option ID = 17105] The expected sum obtained when 10 independent rolls of a fair dice are made is [Question ID = 4278] 1. 20 [Option ID = 17106] 2. 30 [Option ID = 17107] 3. 35 [Option ID = 17108] 4. 45 [Option ID = 17109] Correct Answer :- 35 [Option ID = 17108] 14) Ten hunters randomly fire at a swarm of birds flying overhead. Assume that each hunter acts independently and that each hunter hits the target with probability p. The expected number of birds that escape unhurt when a flock of size 10 flies overhead is [Question ID = 4279] 1. 100(1-p/10) [Option ID = 17110] 2. [10-(p/10)]10 [Option ID = 17111] 3. 10(1-p/10)100 [Option ID = 17112] 4. 10(1-p/10)10 [Option ID = 17113] Correct Answer :- 10(1-p/10)¹⁰ [Option ID = 17113] 3 1/2 15) 5/4 Given the fundamental matrix M = 1/2 3/2 and the submatrix R of the one-step transition probability matrix, which 1 represents transitions from the transient states to the absorbing states such that determine the absorption 0 probability a35 where aij for i = 2,3,4 and j = 4,5. [Question ID = 4280] 1. 5/8 [Option ID = 17114] 2. 1/4 [Option ID = 17115] 3. 3/4 [Option ID = 17116] 4. 15/16 [Option ID = 17117] Correct Answer :- 3/4 [Option ID = 17116] 16) In estimating simultaneous equation models by indirect least squares method, which of the following is true? [Question ID = 4281] 1. GLS is applied to the reduced form equation [Option ID = 17118] 2. GLS is applied to the structural equation [Option ID = 17119] OLS is applied to the reduced form equation [Option ID = 17120] 4. OLS is applied to the structural equation [Option ID = 17121] www.FirstRanker.com Correct Answer :-OLS is applied to the reduced form equation [Option ID = 17120]

	's choice learning models [Option ID	tRanker.com w	ww.FirstRanker.com
Use of data manipulation t	echniques like data smoothing, interpolation	n, extrapolation, imputation etc. [0]	ption ID = 17123]
	he functional form of the model [Option ID - f variables [Option ID = 17125]	• 17124]	
Correct Answer :-			
Use of data manipulation t	echniques like data smoothing, interpolation	n, extrapolation, imputation etc. [0	ption ID = 17123]
	r regression model with intercept, u out to be 0. What does it signify?	sing ordinary least squares es	timation, the value of Durbin-
[Question ID = 4283]	out to be 0. What does it signify:		
	ent in the disturbances [Option ID = 17126]		
	ent in the independent variables [Option ID resent in the model [Option ID = 17128]	= 1/12/]	
	orrelation of order 1 in the disturbances [Op	tion ID = 17129]	
Correct Answer :-	orrelation of order 1 in the disturbances [Op	tion ID - 171291	
19) Consider the follow $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_1 X_{1i}$	ing linear regression model,		
	^{93A31 + u} i multicollinearity, we calculate pair-v	vise correlation coefficients h	etween Y. Y. and Y. Thos
	efficients can be treated as	vise correlation coefficients b	etween A1, A2, and A3. Then,
[Question ID = 4284]			
	not a sufficient condition for high multicollin ficient condition for high multicollinearity [C		
	cient for presence of high multicollinearity (
A sufficient condition but r	not a necessary condition for high multicollin	earity [Option ID = 17133]	
Correct Answer :-			
 A sufficient condition but r 	not a necessary condition for high multicollin	earity [Option ID = 17133]	
	or distributed lag models) not satisfy?		linear regression models does
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variable	- 17134] es [Option ID = 17136]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear 4. The number of observation	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135]	- 17134] es [Option ID = 17136]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear in 4. The number of observation Correct Answer :-	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variable	= 17134] es [Option ID = 17136] natory variables [Option ID = 1713	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] relationship between the explanatory variables is must be greater than the number of explanatory	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear in 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear in 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{r^{th}} X$	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{p^{th}} X$ [Option ID = 17138]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{p} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17139]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{2k}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17138] 3. $X_n \xrightarrow{r^{2k}} X \Rightarrow X_n \xrightarrow{P} X$	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{2k}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{2k}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{2k}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17140]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{2k}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17138] 3. $X_n \xrightarrow{r^{2k}} X \Rightarrow X_n \xrightarrow{P} X$	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{p} X$ [Option ID = 17140] 4. $\sum_{n \to X}^{P} x \Leftrightarrow X_n \xrightarrow{r^{th}} x$	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Leftrightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Leftrightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17141] Correct Answer :-	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{p} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Rightarrow X_n \xrightarrow{p} X$ [Option ID = 17141] Correct Answer :- • $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{p} X$	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Leftrightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Leftrightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Leftrightarrow X_n \xrightarrow{r^{th}} X$ [Option ID = 17141] Correct Answer :-	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134]	-
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{p^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{p^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Rightarrow X_n \xrightarrow{p^{th}} X$ [Option ID = 17141] Correct Answer :- • $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17141]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of expla- ory variables are non-stochastic [Option ID	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134] gence is true?	η
[Question ID = 4285] 1. The values of the explanat 2. The regression model is co 3. There is no perfect linear if 4. The number of observation Correct Answer :- • The values of the explanat 21) Which of the follow [Question ID = 4286] 1. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{p^{th}} X$ [Option ID = 17138] 2. $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$ [Option ID = 17139] 3. $X_n \xrightarrow{p^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17140] 4. $\sum_{n \to X} x \Rightarrow X_n \xrightarrow{p^{th}} X$ [Option ID = 17141] Correct Answer :- • $X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{P} X$ [Option ID = 17141]	ory variables are non-stochastic [Option ID rrectly specified [Option ID = 17135] elationship between the explanatory variables is must be greater than the number of explan ory variables are non-stochastic [Option ID ing relation among modes of convergent	- 17134] es [Option ID = 17136] natory variables [Option ID = 1713 - 17134] gence is true?	η

Firstranker's choice

```
www.FirstRanker.com
                                                                                                    www.FirstRanker.com
   [Option ID = 17144]
4. E(Xk) should exist
   [Option ID = 17145]
Correct Answer :-

    E(|X<sub>k</sub>|<sup>1+δ</sup>) exists for some δ > 0

   [Option ID = 17144]
23) Which of the following statement is correct about the sequence of i.i.d. Cauchy variates having p.d.f.
            1
f(x) = \frac{x}{\pi(1+x)^2}, -\infty < x < \infty
[Question ID = 4288]
1. WLLN does not hold but CLT holds [Option ID = 17146]
2. CLT does not hold but WLLN holds [Option ID = 17147]
3. Both WLLN and CLT do not hold [Option ID = 17148]
4. Both WLLN and CLT hold [Option ID = 17149]
Correct Answer :-

    Both WLLN and CLT do not hold [Option ID = 17148]

24) Let Xk, k = 1,2,..., n be pairwise independent random variables taking two values k and -k with equal probabilities.
Choose the correct statement
[Question ID = 4289]
1. WLLN does not hold for the sequence {X<sub>b</sub>}
   [Option ID = 17150]
2. WLLN holds for the sequence {X<sub>k</sub>}
   [Option ID = 17151]
3. WLLN holds if K=1
   [Option ID = 17152]
4. WLLN can not be examined
   [Option ID = 17153]
Correct Answer :-

    WLLN does not hold for the sequence {X<sub>k</sub>

   [Option ID = 17150]
25) Let f(x,y) = e<sup>-(x+y)</sup>, 0 < x < ∞, 0 < y < ∞. The value of P[X < Y|X < 2Y] is</p>
[Question ID = 4290]
1. 3
   [Option ID = 17154]
   1
2.
   4
   [Option ID = 17155]
   1
3.
   3
   [Option ID = 17156]
4. 1 [Option ID = 17157]
Correct Answer :-
• 3
   4
   [Option ID = 17154]
26) Which of the following is NOT true?
                                                      www.FirstRanker.com
[Question ID = 4291]
```

Firstranker's ychoiceatrix

 Covariance matrix of X and Y is a square matrix [Option ID = 17160] Correct Answer :- Covariance matrix of X and Y is a square matrix [Option ID = 17161] Correct Answer :- Covariance matrix of X and Y is a square matrix [Option ID = 17160] 27) If X ~ N_P(H, ,Σ), then (X = μ)^T Σ⁻¹(X = μ) follows [Question ID = 4292] Wishart distribution [Option ID = 17162] X ² distribution [Option ID = 17163] 	Contine 10 - 171503	www.FirstRanker.com	www.FirstRanker.com
4. Covariance matrix of X and Y is the transpose of covariance matrix of Y and X. [Option D = 17161] 27) If $X \sim N_p((i, Z)$, then $(X - \mu)^T \Sigma^{-1}(X - \mu)$ follows [Question ID = 4292] 1. What distribution [Option D = 17163] 2. χ^2 distribution [Option D = 17166] 2. χ^2 distribution [Option D = 17168] 2. χ^2 distribution [Option D = 17163] 2. χ^2 distribution [Option D = 17163] 3. χ^2 distribution D = 4294] 4. χ^2 distribution D = 4294] 5. χ^2 distribution D = 4294] 6. χ^2 distribution D = 4294] 7. χ^2 dis	[Option ID = 17159] 3. Covariance matrix of X and Y is a square matrix		
Correct Answer :: • Constance matrix of χ and χ is a square matrix [[Option D = -17:60] 27) If $\chi \sim N_p(\chi, \Sigma)$, then $(\chi - \mu)^T \Sigma^{-1} (\chi - \mu)$ follows [[Question ID = 4292] • Wahart distribution [[Option D = -17:62] • Katellings TF distribution [[Option D = -17:63] • None of these [[Option D = -17:63] 28) If $\chi \sim N_{\Sigma}(\chi, \Sigma)$, where $\Sigma = \begin{pmatrix} I & \rho \\ - 1 \end{pmatrix}$ For what value of $\rho, \chi_1 + \chi_2$ and $\chi_1 - \chi_2$ are independent? [[Question ID = 4293] • [] [[Option D = -17:63] • [] [[Option D = -17:63] • [] [[Option D = -17:64] • [] [[Option D = -17:65] • [] [[[Option ID = -17:65]] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [[[[[Option ID = -17:65]] • [[[[[Option ID = -17:65]] • [[[[[[Option ID = -17:65]] • [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[variance matrix of Y and X	
• Covariance matrix of χ and χ is a square matrix [Option D = 17160] 27) If $\chi \sim N_{P}(\mu, \Sigma)$, then $(\chi - \mu)^{T} \Sigma^{-1}(\chi - \mu)$ follows [Question ID = 4292] . Wahart distribution [Option D = 17163] . Moleculing T aff attrabution [Option D = 17164] . Hore of these (Option D = 17165] 28) If $\chi \sim N_{\Sigma}(\mu, \Sigma)$, where $\Sigma = \begin{pmatrix} \mu & \mu \\ \mu & 1 \end{pmatrix}$ for what value of $\rho, \chi_{1} + \chi_{2}$ and $\chi_{1} - \chi_{2}$ are independent? [Question ID = 4293] . [Option D = 17166] 2. 2 [Option D = 17166] 2. 3 [Option D = 17166] 2. 1 [Option D = 17166] 2. 2 [Option D = 17166] 2. 3 [Option D = 17166] 2. 3 [Option D = 17166] 2. 4 [Option D = 17166] 2. 3 [Option D = 17166] 2. 9 [Option D = 17168] [Option D = 17178] 2. Principal composed analysis [Option D = 17172] 2. Francipal composed analysis [Option D = 17172] 2. Francipal composed analysis [Option D = 17172] 3. Factor analysis [Option D = 17172] 3. Factor analysis [Option D = 17172] 4. None of these [Option D = 17172] 5. Factor analysis [Option D = 17172] 5. Factor analysis [Opti	[Option ID = 17161]		
$[Option ID - 17160]$ 27) If $\chi \sim N_{F}(\chi, \Sigma)$, then $(\chi - \mu)^{T} \Sigma^{-1}(\chi - \mu)$ follows $[Question ID - 4292]$ 1. What distribution $[Option ID - 17163]$ 2. χ^{2} distribution $[Option ID - 17163]$ 28) If $\chi \sim N_{2}(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ for what value of $\rho, \chi_{1} + \chi_{2}$ and $\chi_{1} - \chi_{2}$ are independent? $[Question ID - 17163]$ 29) If $\chi \sim N_{2}(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ for what value of $\rho, \chi_{1} + \chi_{2}$ and $\chi_{1} - \chi_{2}$ are independent? $[Question ID - 17163]$ 29) If $\chi \sim N_{2}(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ for what value of $\rho, \chi_{1} + \chi_{2}$ and $\chi_{1} - \chi_{2}$ are independent? $[Question ID - 17163]$ 20) If $\chi \sim N_{2}(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ for what value of $\rho, \chi_{1} + \chi_{2}$ and $\chi_{1} - \chi_{2}$ are independent? $[Question ID - 17163]$ 20) Uption ID - 17163[21) Control ID - 17163[22) Control ID - 17163[23) Vhich of the following technique helps to assign objects to one of the groups among a number of groups? $[Question ID - 4294]$ 1. Discriminant analysis $[Option ID - 17171]$ 1. Factor analysis $[Option ID - 17172]$ 4. None of these $[Option ID - 17173]$ 2. Factor analysis $[Option ID - 17173]$ 2. Factor analysis $[Option ID - 17173]$ 2. Factor analysis $[Option ID - 17173]$ 3. Factor analysis $[Option ID - 17173]$ 3. Factor analysis $[Option ID - 17173]$ 3. Factor analysis $[Option ID - 17173]$ 4. None of these $[Option ID - 17173]$ 5. Factor analysis $[Option ID - 17173]$			
27) if $\chi \sim N_{\mu}(\chi, \Sigma)$, then $(\chi - \mu)^{T} \Sigma^{-1}(\chi - \mu)$ follows [Question 10 = 4392] 1. Wabert distribution [Option 10 - 17163] 2. χ^{2} distribution [Option 10 - 17164] 4. None of these [Option 10 - 17165] [Carreet Answer : • χ^{2} distribution [Option 10 - 17163] [28) If $\chi \sim N_{\lambda}(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho X_{1} + X_{2}$ and $X_{1} - X_{2}$ are independent? [Question 10 = 4293] 1. 1 [Option 10 - 17166] 2. 2 [Option 10 - 17166] 2. 2 [Option 10 - 17166] 2. 2 [Option 10 - 17166] 2. 2 [Option 10 - 17166] 2. 9 (Mich of the following technique helps to assign objects to one of the groups among a number of groups? [Question 10 = 4294] 1. Incurning an analysis [Option 10 - 17170] 2. Photopic composed analysis [Option 10 - 17170] 3. Rector analysis [Option 10 - 17171] 3. Factor analysis [Option 10 - 17172] 4. None of these [Option 10 - 17172] 4. None of these [Option 10 - 17172] 5. Priorpie (Composed analysis [Option 10 - 17172] 5. Priorpie (Compose			
[Question ID = 4292] 1. What distribution [Option D - 17163] 2. χ^2 distribution [Option D - 17163] 3. Hotelling's 1 ² distribution [Option D - 17163] 28) Hig ~ N ₂ (0, 2), where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ For what value of $\rho_1 X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 17166] 2. 2 [Option D - 17166] 1. 1 [Option D - 17166] 2. 2 [Option D - 17166] 41 [Option D - 17166] 41 [Option D - 17166] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. borcriminant analysis [Option D - 17170] 2. Principal Component analysis [Option D - 17170] 3. Principal Component analysis [Option D - 17170] 4. Noter of these [Option D - 17170] 4. Noter of these [Option D - 17170] 5. Principal Component analysis [Option D - 17170] 5. Principal Component analysis [Option D - 17170] 6. Correct Answer :- • Discriminant analysis [Option D - 17171] 5. Retor analysis [Option D - 17172] 5. Correct Answer :- • Discriminant analysis [Option D - 17172] 5. Correct Answer :- • Discriminant analysis [Option D - 17173] 5. Correct Answer :- • Discriminant analysis [Option D - 17173] 5. Correct Answer :- • Discriminant analysis [Option D - 17173] 5. Correct Answer :- • Discriminant analysis	[Option ID = 17160]		
1. What distribution [Option ID = 17162] 2. χ^2 distribution [Option ID = 17163] (Option ID = 17165] Correct Answer :- χ^2 distribution [Option ID = 17165] 28) If $\chi \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ For what value of $\rho, \chi_1 + \chi_2$ and $\chi_1 - \chi_2$ are independent? [Question ID = 17163] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17166] 2. 2 [Option ID = 17168] (Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17171] 1. Discriminant analysis [Option ID = 17171] 2. Factor analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17171] 4. None of these [Option ID = 17171] 5. Factor analysis	27) If $\chi \sim N_p(\mu, \Sigma)$, then $(\chi - \mu)^T \Sigma^{-1} (\chi - \mu)$) follows	
2. χ^2 distribution [Option ID - 17163] A known of these [Option ID - 17164] (Option ID - 17165] Correct Answer :- * χ^2 distribution [Option ID - 17163] 28) If $\chi \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho, \chi_1 + \chi_2$ and $\chi_1 - \chi_2$ are independent? [Question ID = 4293] 1. 1 [Option ID - 17166] 2. 2 [Option ID - 17166] 2. 2 [Option ID - 17168] (Option ID - 17168] 41 [Option ID - 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID - 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID - 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID - 17170] 2. Principal Component analysis [Option ID - 17171] 3. Factor analysis [Option ID - 17171] 4. Kone of these [Option ID - 17173] Correct Answer :- • Discriminant analysis			
3. Hotelling's 1 ² distribution [Option ID = 17164] 4. None of these [Option ID = 17165] Carrect Answer : $\frac{1}{\chi^2}$ distribution [Option ID = 17163] 28) If $\chi \sim N_2(0, \mathbb{X})$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho, X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17166] 2. 2 [Option ID = 17168] 41 [Option ID = 17168] 41 [Option ID = 17168] 5. 0 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17168] 29) Unit of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Carret Answer :- • Discriminant analysis	[Option ID = 17162] 2. χ^2 distribution		
4. None of these [Option ID = 17165] Correct Answer :- χ^2 distribution [Option ID = 17163] 28) If $\chi \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ p & 1 \end{pmatrix}$. For what value of $\rho, \chi_1 + \chi_2$ and $\chi_1 - \chi_2$ are independent? [Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17167] 1. 0 [Option ID = 17168] 41 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17170] 3. Factor analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these	[Option ID = 17163] 3. Hotelling's T ² distribution		
[Option ID = 17165] Correct Answer :- * χ^2 distribution [Option ID = 17163] 28) If $\chi \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17168] 41 [Option ID = 17168] 41 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17170] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17172] 4. None of these [Option ID = 17172] 5. Correct Answer :- • Discriminant analysis			
• χ^2 distribution [Option ID - 17163] 28) If $\chi \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17167] 3. 0 [Option ID = 17168] 4. -1 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis			
[Option ID = 17163] 28) If $\mathcal{G} \sim N_2(Q, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ For what value of $\rho, X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17168] 41 [Option ID = 17168] 41 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis	Correct Answer :-		
28) If $\mathcal{G} \sim N_2(Q, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of $\rho, X_1 + X_2$ and $X_1 - X_2$ are independent? [Question ID = 4293] 1. 1 [Option ID - 17166] 2. 2 [Option ID - 17168] 41 [Option ID - 17169] Correct Answer :- • 0 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17171] 2. Frincipal component analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis	 χ² distribution 		
[Question ID = 4293] 1. 1 [Option ID = 17166] 2. 2 [Option ID = 17167] 3. 0 [Option ID = 17168] 41 [Option ID = 17169] Correct Answer :- • 0 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17178] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 17178] 2. Principal component analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis	[Option ID = 17163]	(·	
 0 [Option ID = 17168] 29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- <u>Obscriminant analysis</u> 	1. 1 [Option ID = 17166] 2. 2 [Option ID = 17167] 3. 0 [Option ID = 17168] 41		
29) Which of the following technique helps to assign objects to one of the groups among a number of groups? [Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :-			
[Question ID = 4294] 1. Discriminant analysis [Option ID = 17170] 2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis	[Option ID = 17168]		
 Discriminant analysis [Option ID = 17170] Principal component analysis [Option ID = 17171] Factor analysis [Option ID = 17172] None of these [Option ID = 17173] Correct Answer :- Discriminant analysis 	29) Which of the following technique helps	to assign objects to one of the groups	among a number of groups?
2. Principal component analysis [Option ID = 17171] 3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis			
3. Factor analysis [Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis			
4. None of these [Option ID = 17173] Correct Answer :- • Discriminant analysis			
Correct Answer :- Discriminant analysis			
Discriminant analysis	[Option ID = 17172]		
	[Option ID = 17172] 4. None of these		
	[Option ID = 17172] 4. None of these [Option ID = 17173] Correct Answer :-		

FirstRanker.	com	-
[2] [3 -1 2]	www.FirstRanker.com	www.FirstRanker.com
^{1.} $N_3 \begin{bmatrix} 2 \\ 1 \\ 0.5 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$		
[Option ID = 17174]		
$ {}^{2} N_{3} \begin{bmatrix} 2 \\ 3 \\ 0.5 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 2.0 \\ -2 & 2 & 1.0 \\ 2.0 & 1.5 & 1.5 \end{bmatrix} $		
[Option ID = 17175]		
^{3.} $N_3 \begin{bmatrix} 2 \\ 3 \\ 0.5 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 2.0 \\ -2 & 2 & 1.0 \\ 2 & 1 & 1.5 \end{bmatrix}$		
[Option ID = 17176] 4. None of these		
[Option ID = 17177]		
Correct Answer :-		
• $N_3\begin{bmatrix} 2\\ 3\\ 0.5 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 2.0\\ -2 & 2 & 1.0\\ 2 & 1 & 1.5 \end{bmatrix}$		
[Option ID = 17176]		
 Let X₁, X₂,, X_n be a random san 	nple from a distribution with finite mean	u. Consider an estimator $\tau = \overline{v}^2$ for
estimating μ^2 . Which of the following stat		/ = x · · ·
[Question ID = 4296]		
T is unbiased and consistent		
[Option ID = 17178] 2. T is neither unbiased nor consistent		
[Option ID = 17179] 3. T is biased but consistent		
[Option ID = 17180]		
 T is unbiased but not consistent 		
[Option ID = 17181]		
Correct Answer :- • T is blased but consistent		
[Option ID = 17180]		
		We When a contraction of A to
 Let X₁, X₂,, X_n be a random sam 	nple from U(-0,0) distribution, Maximum	likelihood estimator of 0 is
[Question ID = 4297] 1. X _(n) , the nth order statistic		
[Option ID = 17182] 2 X		
[Option ID = 17183] 3. X ₍₁₎ , the first order statistic		
[Option ID = 17184] 4X ₍₁₎		
[Option ID = 17185]		
Correct Answer :-		
 -X₍₁₎ [Option ID = 17185] 		
33) Let X ₁ , X ₂ ,, X _n be i.i.d N(μ, σ ²), both sufficient statistic for (μ, σ ²)?	μ andσ² unknown. Which of the following	g is a minimal

	er's choice	www.FirstRanker.com	www.FirstRanker.com
3. $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$			
[Option ID = 17188] 4. All of these			
[Option ID = 17189]			
Correct Answer :-			
 All of these 			
[Option ID = 17189]			
34) Which of the fo	llowing tests can be	considered as a non-parametric equival	ent of one-way repeated measures ANG
[Question ID = 4299] 1. Kruskal-Wallis test [0]	*		
 Kruskal-wallis test [U Mann-Whitney U test 			
3. Friedman test [Option	ID = 17192]		
 Kolmogorov-Smirnov t 	test [Option ID = 17193]		
Correct Answer :- Friedman test [Option	ID = 17192]		
		from an exponential distribution with m	
critical region fo	or testing $H_0: \theta = 2 ag$	$ainst H_1: \theta = 1$ be defined as, $W = \{\underline{x}; x_1 \in \mathcal{X}\}$	$+x_2 + x_3 \ge 9.5$.
Then, the size of the	e critical region and	the power of the test will be, respectiv	ely?
[Question ID = 4300] 1. $P[Y \ge 9.5], P[Y \ge 19]$			
	y); where 1 ~ X(6)		
[Option ID = 17194] 2. $P[Y \ge 9.5], P[Y \ge 19]$	9]; where $Y \sim \chi^2_{(3)}$		
[Option ID = 17195]			
3. $P[Y \ge 9.5], P[Y \ge 19]$	9]; where Y~exp(3)		
[Option ID = 17196]			
4. $P[Y \ge 9.5], P[Y \ge 19]$	9]; where Y~exp(6)		
[Option ID = 17197]			
Correct Answer :-	6.		
 P[Y ≥ 9.5], P[Y ≥ 19 	9]; where $Y \sim \chi^2_{(6)}$		
[Option ID = 17194]			
36) If y be a negativ	e binomial random v	ariable with parameters n and p, then for n	=1. y will become:
50, ii <u>A</u> 10 1 iiigiii			
[Question ID = 4301]	1		
1. Geometric random vai	-		
[Option ID = 17198] 2. Bernoulli random varia	able		
[Option ID = 17199]			
3. Binomial random varia	ble		
[Option ID = 17200] 4. Poisson random variat	de		
[Option ID = 17201]			
Correct Answer :-			
 Geometric random vai 	riable		
[Option ID = 17198]			
A 101 1447 1 1 1 1		ecessary in order that we may conclude	

FirstRanker.com

[Option ID = 17203]	www.FirstRanker.com	www.FirstRanker.com
3. n=26		
[Option ID = 17204] 4. n=24		
[Option ID = 17205]		
Correct Answer :- • n=28		
[Option ID = 17203]		
28) Let V be a rendem unichla/unstag with a	umple enses y 🗆 Do and probability model	The class of probability models
38) Let X be a random variable/vector with s: $P = \{P_{\theta}, \theta \in \Theta\}$ is a one-parameter exponential		p_{g} the class of probability models
$p(x \theta) = h(x) \exp\{ \vartheta(\theta)T(x) - B(\theta) \}$		
here		
$h: \chi \rightarrow R$		
$\vartheta: \Theta \rightarrow R$		
$B: \Theta \rightarrow R$		
then for what value of $B(\theta)$ the above pmf will be	nave Binomial distribution?	
[Question ID = 4303]		
1. $B(\theta) = 1 - \log(\theta)$		
[Option ID = 17206] 2. $B(\theta) = +n \log(1 - \theta)$		
[Option ID = 17207] 3. $B(\theta) = \frac{1}{\log(\theta)}$		
[Option ID = 17208] 4. $B(\theta) = -n \log(1 - \theta)$		
[Option ID = 17209]		
Correct Answer :- • $B(\theta) = -n \log(1 - \theta)$		
[Option ID = 17209]		
39) Suppose that dependent variable Y reg available:	ressed on four regressor variables and a	constant. The following information is
Number of observations = 30		
Total sum of squares (SST) = 400		
Sum of Squared Errors (SSE) = 100		
Then an unbiased estimate of σ^2 and the va	lue of R ² are:	
[Question ID = 4304] 1. 4 and 0.75		
[Option ID = 17210] 2. 4 and 0.70		
[Option ID = 17211] 3. 3 and 0.75		
[Option ID = 17212] 4. 4 and 0.87		
[Option ID = 17213]		
Correct Answer :-		
 4 and 0.75 [Option ID = 17210] 	unum FiretDenken som	
	www.FirstRanker.com	
40) Which of the following step / assumption	on in regression modeling impacts the tr	ade-off between under-fitting and over-

ker.com he Fir strainkeists chroiceinversion or gradient descent [Option ID = 17214] www.FirstRanker.com www.FirstRanker.com the use of Kernel [Option ID = 17215] 3. the use of a constant-term [Option ID = 17216] 4. the polynomial degree [Option ID = 17217] Correct Answer :- the polynomial degree [Option ID = 17217] 41) Let N denote the incidence matrix of a BIBD with parameters v, b, r, k and 2, then the off-diagonal entries of NN' are all equal to [Question ID = 4306] 1. r [Option ID = 17218] 2. k [Option ID = 17219] 3. 2 [Option ID = 17220] 4. v [Option ID = 17221] Correct Answer :-• 2 [Option ID = 17220] 42) Consider a 25 factorial experiment conducted in four blocks of size 8 each. If some of the elements of the key block are: (1), cd, abd, ae, bde, the other elements are [Question ID = 4307] 1. abe, abde, bd [Option ID = 17222] 2. abc, acde, ce [Option ID = 17223] 3. abc, acde, bce [Option ID = 17224] 4. abe, acde, bce [Option ID = 17225] Correct Answer :-· abc, acde, bce [Option ID = 17224] 43) For a 3³ factorial experiment, the entries of the key block in a replicate are: (1), bc², b²c, ac², a²c, ab², a²b, abc, a2b2c2. The confounded effect is [Question ID = 4308] 1. ab²c² [Option ID = 17226] 2. abc [Option ID = 17227] ab²c [Option ID = 17228] 4. abc2 [Option ID = 17229] Correct Answer :- abc [Option ID = 17227] 44) For a 26 factorial experiment conducted in 23 blocks of size 23each, the total number of confounded effects is: [Question ID = 4309] 1.3 [Option ID = 17230] 2.7 [Option ID = 17231] 3 5 www.FirstRanker.com [Option ID = 17232]

4. None of these

www.FirstRanker.com

stRanker.com

rstranker's choice

www.FirstRanker.com

```
[Option ID = 17231]
45) In construction of a 25-2 fractional factorial design, the generators D = AB and E = ABC are used. The alias set corresponding
to the factorial effect RC is
[Question ID = 4310]
1- BC = ACD = ACE = BDE
  [Option ID = 17234]

 BC = AD = ACE = BDE

  [Option ID = 17235]
3. BC = ACD = AE = BDE
  [Option ID = 17236]
4. BC = ACD = AE = DE
  [Option ID = 17237]
Correct Answer :-

    BC = ACD = AE = BDE

  [Option ID = 17236]
46) Consider a population of NM elements grouped into N first stage units and M second stage units. A sample of n first
stage units is selected. If n = N, this corresponds to
[Question ID = 4311]
1. Cluster sampling
  [Option ID = 17238]
2. SRSWOR
  [Option ID = 17239]
3. Stratified sampling
  [Option ID = 17240]
4. None of these
  [Option ID = 17241]
Correct Answer :-

    Stratified sampling

  [Option ID = 17240]
47) Consider a population of N units divided into two classes – response class (units that respond at first attempt)
and non-response class (units that do not respond). n1 is the simple random sample of respondents drawn from the
response class and n_2 is a simple random sample drawn from the non- response class. n_2 = h_2 f, where h_2 is the sub
sample from the n2 non-respondents. If 32 is the population mean square for the non response class, variance of the
```

```
[Question ID = 4312]

1. \frac{(f-1)}{n} \frac{n_2}{N} S_2^2

[Option ID = 17242]

2. (\frac{1}{n} - \frac{1}{N}) S^2 + \frac{(1-f)}{n} \frac{n_2}{N} S_2^2

3. \frac{(f-1)}{n} \frac{N_2}{N} S_2^2

[Option ID = 17243]

4. (\frac{1}{n} - \frac{1}{N}) S^2 + \frac{(f-1)}{n} \frac{N_2}{N} S_2^2

[Option ID = 17245]

Correct Answer :-

• (\frac{1}{n} - \frac{1}{N}) S^2 + \frac{(f-1)}{n} \frac{N_2}{N} S_2^2
```

[Option ID = 17245]

www.FirstRanker.com

unbiased estimator $\overline{y_{\mu\nu}}$ of the population mean \overline{y} of variable of interest proposed by Hansen and Hurwitz is:

	Deing included in the sample th	an a unit than it.
[Question ID = 4313]	www.FirstRanker.com	www.FirstRanker.com
[Option ID = 17246] 2. Smaller		
[Option ID = 17247] 3. Proportional		
[Option ID = 17248] 4. None of these		
[Option ID = 17249]		
Correct Answer :- • Smaller [Option ID = 17247]		
cluster means [Question ID = 4314] 1. Is unbiased if there is no correlation between 2. Is unbiased if there is positive correlation between	usters, the estimator of the population mean cluster mean and cluster size [Option ID = 17250] ween cluster mean and cluster size [Option ID = 1725 tween cluster mean and cluster size [Option ID = 1725]	51]
Correct Answer :- Is unbiased if there is no correlation between	cluster mean and cluster size [Option ID = 17250]	
For this, the area is subdivided into 100 dead trees in a random sample of 10 of	a scientist wants to estimate the number of plots of equal size. By using photo count as these plots is calculated to be 150. The scie nese 5 plots is 70 while the actual count is 1	s an auxiliary variable, the number of entist subsequently selects 5 plots out of
Correct Answer :- • 2357 trees [Option ID = 17255]		
	MN FIIST	

