irstranker's choice DU MPhil PhDwwwSEitsißenker.com

www.FirstRanker.com

Topic: - STATS MPHIL S2

1) A fraction non-conforming control chart with n=400 has the following parameters; UCL=0.0809, CL=0.05, LCL=0.0191. The corresponding parameters for an equivalent control chart based on the number non conforming are [Question ID = 4266]

1. (5.92, 32.08) [Option ID = 17058]

2. (6.92, 33.08) [Option ID = 17059]

3. (7.92, 34.08) [Option ID = 17060]

4. (8.92, 35.08) [Option ID = 17061]

Correct Answer :-

• (6.92, 33.08) [Option ID = 17059]

2) In an abridged life table, functions are computed for

[Question ID = 4267]

1. Each year of age

[Option ID = 17062]

2. Age intervals greater than one year

[Option ID = 17063]

3. From birth till the death of last member of the group

[Option ID = 17064]

4. None of these

[Option ID = 17065]

Correct Answer :-

• Age intervals greater than one year

[Option ID = 17063]

3) Suppose that a parallel system with identical components has an overall reliability of 0.98. If each component has reliability of 0.25, then the minimum number of components in the system will be

[Question ID = 4268]

- 1. 12 [Option ID = 17066]
- 2. 13 [Option ID = 17067]
- 3. 14 [Option ID = 17068]
- 4. 15 [Option ID = 17069]

Correct Answer :-

• 14 [Option ID = 17068]

4) The reliability of a series system decreases with

[Question ID = 4269]

1. A decrease in the number of its components

[Option ID = 17070]

2. An increase in the number of its components

[Option ID = 17071]

3. Same number of its components

[Option ID = 17072]

4. None of these

[Option ID = 17073]

Correct Answer :-

• An increase in the number of its components

[Option ID = 17071]

5) If a manufacturing process produces a large number of non-conforming units, then the process capability is [Question ID = 4270]

- 1. Less than one |Option ID = 17074|
- 2. Greater than one [Option ID = 17075]
- 3. Equal to one [Option ID = 17076]4. Equal to zero [Option ID = 17077]

www.FirstRanker.com

than one [Otton in 4717] NCI. CUIII	
Firstranker's choice 6) Octal equivalent of binary number 1100000 W.W. FirstRanker.com	www.FirstRanker.com
[Question ID = 4271]	
1. 192 [Option ID = 17078]	
2. 300 [Option ID = 17079]	
3. 071 [Option ID = 17080] 4. 301 [Option ID = 17081]	
Correct Answer :-	
• 300 [Option ID = 17079]	
7) Converted value of (53) ₈ to Base 10 is :	
[Question ID = 4272]	
1. 43 [Option ID = 17082] 2. 63 [Option ID = 17083]	
3. 64 [Option ID = 17084]	
4. 42 [Option ID = 17085]	
Correct Answer:- • 43 [Option ID = 17082]	
8) Researches that are being conducted to study the Novle Coronavirus will be to	ermed as:
[Question ID = 4273]	
1. action research	
[Option ID = 17086] 2. applied research	
[Option ID = 17087] 3. longitudinal research	
[Option ID = 17088]	
4. empirical research	
[Option ID = 17089]	
Correct Answer :-	
• action research	
[Option ID = 17086]	
9) Ex post facto research refers to:	
[Question ID = 4274]	
1. descriptive research	
[Option ID = 17090]	
2. fundamental research	
[Option ID = 17091] 3. analytical research	
[Option ID = 17092]	
4. empirical research	
[Option ID = 17093]	
Correct Answer :-	
descriptive research	
[Option ID = 17090]	
10) The applied research uses the principles of :	
[Question ID = 4275]	
1. Action research [Option ID = 17094]	
2. Fundamental research [Option ID = 17095] 3. Philosophical research [Option ID = 17096]	
4. Historical research [Option ID = 17096]	
Correct Answer :-	
• Fundamental research [Option ID = 17095]	

www.FirstRanker.com

Correct Answer :-

• 12e⁻⁴ [Option ID = 17098]

- 12) The number of marriages that remain intact when there are a total of m deaths among the N married couples are [Question ID = 4277]
- 1. $\{(2N-m)(2N-m+2)\}/(2N-1)[Option ID = 17102]$
- 2. $\{(2N-m)(2N-m-1)\}/(2N-1)$ [Option ID = 17103]
- 3. $\{2(2N-m)(2N-m-1)\}/(2N-1)[Option ID = 17104]$
- 4. $\{(2N-m)(2N-m-1)\}/\{2(2N-1)\}[Option ID = 17105]$

Correct Answer :-

• {(2N-m) (2N-m-1)}/{2 (2N-1)} [Option ID = 17105]

13) The expected sum obtained when 10 independent rolls of a fair dice are made is

[Question ID = 4278]

- 1. 20 [Option ID = 17106]
- 2. 30 [Option ID = 17107]
- 3. 35 [Option ID = 17108]
- 4. 45 [Option ID = 17109]

Correct Answer :-

• 35 [Option ID = 17108]

14) Ten hunters randomly fire at a swarm of birds flying overhead. Assume that each hunter acts independently and that each hunter hits the target with probability p. The expected number of birds that escape unhurt when a flock of size 10 flies overhead is

[Question ID = 4279]

- 1. 100(1-p/10) [Option ID = 17110]
- 2. $[10-(p/10)]^{10}$ [Option ID = 17111]
- 3. $10(1-p/10)^{100}$ [Option ID = 17112]
- 4. $10(1-p/10)^{10}$ [Option ID = 17113]

Correct Answer :-

• $10(1-p/10)^{10}$ [Option ID = 17113]

Given the fundamental matrix M = $\begin{bmatrix} 5/4 & 3 & 1/2 \\ 1/2 & 3/2 & 1 \\ 1/8 & 3/8 & 5/4 \end{bmatrix}$ and the submatrix R of the one-step transition probability matrix, which

represents transitions from the transient states to the absorbing states such that $R = \begin{bmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 1/2 \end{bmatrix}$, determine the absorption

probability a_{35} where a_{ij} for i = 2,3,4 and j = 4,5.

[Question ID = 4280]

1. 5/8

[Option ID = 17114]

2. 1/4

[Option ID = 17115]

3. 3/4

[Option ID = 17116]

4. 15/16

[Option ID = 17117]

Correct Answer :-

• 3/4

[Option ID = 17116]

- 16) In estimating simultaneous equation models by indirect least squares method, which of the following is true? [Question ID = 4281]
- 1. GLS is applied to the reduced form equation [Option ID = 17118]
- 2. GLS is applied to the structural equation [Option ID = 17119]
- 3. OLS is applied to the reduced form equation [Option ID = 17120]
- 4. OLS is applied to the structural equation [Option ID = 17121]

www.FirstRanker.com

Correct Answer :-

• OLS is applied to the reduced form equation [Option ID = 17120]

- 1. As a consequence of error-learning models [Option ID WWW].FirstRanker.com
- 2. Use of data manipulation techniques like data smoothing, interpolation, extrapolation, imputation etc. [Option ID = 17123]
- 3. Incorrect specification of the functional form of the model [Option ID = 17124]
- 4. Incorrect transformation of variables [Option ID = 17125]

Correct Answer :-

- Use of data manipulation techniques like data smoothing, interpolation, extrapolation, imputation etc. [Option ID = 17123]
- 18) While fitting a linear regression model with intercept, using ordinary least squares estimation, the value of Durbin-Watson d statistic came out to be 0. What does it signify?

[Question ID = 4283]

- 1. Autocorrelation is not present in the disturbances [Option ID = 17126]
- 2. Autocorrelation is not present in the independent variables [Option ID = 17127]
- 3. Heteroscedasticity is not present in the model [Option ID = 17128]
- 4. Evidence of positive autocorrelation of order 1 in the disturbances [Option ID = 17129]

Correct Answer :-

- Evidence of positive autocorrelation of order 1 in the disturbances [Option ID = 17129]
- 19) Consider the following linear regression model,

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

To test the presence of multicollinearity, we calculate pair-wise correlation coefficients between X_1 , X_2 , and X_3 . Then, high pair-wise correlation coefficients can be treated as

[Question ID = 4284]

- 1. A necessary condition but not a sufficient condition for high multicollinearity [Option ID = 17130]
- 2. Both a necessary and a sufficient condition for high multicollinearity [Option ID = 17131]
- 3. Neither necessary nor sufficient for presence of high multicollinearity [Option ID = 17132]
- 4. A sufficient condition but not a necessary condition for high multicollinearity [Option ID = 17133]

Correct Answer :-

- A sufficient condition but not a necessary condition for high multicollinearity [Option ID = 17133]
- 20) Which one of the following critical classical assumptions of least squares estimation of linear regression models does the Koyck transformation (for distributed lag models) not satisfy?

[Question ID = 4285]

- 1. The values of the explanatory variables are non-stochastic [Option ID = 17134]
- 2. The regression model is correctly specified [Option ID = 17135]
- 3. There is no perfect linear relationship between the explanatory variables [Option ID = 17136]
- 4. The number of observations must be greater than the number of explanatory variables [Option ID = 17137]

Correct Answer :-

- The values of the explanatory variables are non-stochastic [Option ID = 17134]
- 21) Which of the following relation among modes of convergence is true? [Question ID = 4286]

1.
$$X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{r^{th}} X$$

$$2. \ X_n \xrightarrow{p} X \Leftrightarrow X_n \xrightarrow{d} X$$

3.
$$X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{p} X$$

4.
$$X_n \stackrel{p}{\to} X \Leftrightarrow X_n \stackrel{r^{th}}{\longrightarrow} X$$

[Option ID = 17141]

Correct Answer :-

$$X_n \xrightarrow{r^{th}} X \Rightarrow X_n \xrightarrow{p} X$$

[Option ID = 17140]

22) The necessary and sufficient condition for WLLN to hold for the arbitrary sequence of random variables $\{X_{k}\}$ is

[Question ID = 4287]

- 1. Variance should exist.
 - [Option ID = 17142]

www.FirstRanker.com

[Option ID = 17144]

4. $E(X_k)$ should exist

[Option ID = 17145]

Correct Answer :-

• $E(|X_k|^{1+\delta})$ exists for some $\delta > 0$

[Option ID = 17144]

23) Which of the following statement is correct about the sequence of i.i.d. Cauchy variates having p.d.f.

$$f(x) = \frac{1}{\pi(1+x)^2}, -\infty < x < \infty$$

[Question ID = 4288]

- 1. WLLN does not hold but CLT holds [Option ID = 17146]
- 2. CLT does not hold but WLLN holds [Option ID = 17147]
- 3. Both WLLN and CLT do not hold [Option ID = 17148]
- 4. Both WLLN and CLT hold [Option ID = 17149]

Correct Answer :-

• Both WLLN and CLT do not hold [Option ID = 17148]

24) Let $\chi_k, k = 1, 2, ..., n$ be pairwise independent random variables taking two values k and -k with equal probabilities.

Choose the correct statement

[Question ID = 4289]

1. WLLN does not hold for the sequence $\{X_k\}$

[Option ID = 17150]

2. WLLN holds for the sequence $\{X_k\}$

[Option ID = 17151]

3. WLLN holds if K=1

[Option ID = 17152]

4. WLLN can not be examined

[Option ID = 17153]

Correct Answer :-

• WLLN does not hold for the sequence $\{X_k\}$

[Option ID = 17150]

25) Let $f(x,y) = e^{-(x+y)}, 0 < x < \infty, 0 < y < \infty$. The value of P[X < Y | X < 2Y] is

[Question ID = 4290]

1. $\frac{3}{4}$

[Option ID = 17154]

2. $\frac{1}{4}$

[Option ID = 17155]

3. $\frac{1}{3}$

[Option ID = 17156]

4. 1 [Option ID = 17157]

Correct Answer :-

• $\frac{3}{4}$

[Option ID = 17154]

26) Which of the following is NOT true?

www.FirstRanker.com

www.FirstRanker.com

[Option ID = 17159]

3. Covariance matrix of X and Y is a square matrix

[Option ID = 17160]

4. Covariance matrix of X and Y is the transpose of covariance matrix of Y and X

[Option ID = 17161]

Correct Answer :-

• Covariance matrix of X and Y is a square matrix

[Option ID = 17160]

27) If $\underline{X} \sim N_P(\mu_{\perp}, \Sigma)$, then $(\underline{X} - \underline{\mu})^T \Sigma^{-1}(\underline{X} - \underline{\mu})$ follows

[Question ID = 4292]

1. Wishart distribution

[Option ID = 17162]

2. χ^2 distribution

[Option ID = 17163]

3. Hotelling's T² distribution

[Option ID = 17164]

4. None of these

[Option ID = 17165]

Correct Answer :-

• χ^2 distribution

[Option ID = 17163]

28) If $X \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. For what value of ρ , $X_1 + X_2$ and $X_1 - X_2$ are independent?

[Question ID = 4293]

1. 1

[Option ID = 17166]

2. 2

[Option ID = 17167]

3. 0

[Option ID = 17168]

4. -

[Option ID = 17169]

Correct Answer :-

• (

[Option ID = 17168]

29) Which of the following technique helps to assign objects to one of the groups among a number of groups?

[Question ID = 4294]

1. Discriminant analysis

[Option ID = 17170]

2. Principal component analysis

[Option ID = 17171]

3. Factor analysis

[Option ID = 17172]

4. None of these

[Option ID = 17173]

Correct Answer :-

• Discriminant analysis

[Option ID = 17170]

--www.FirstRanker.com-----

If $Y_{2\nu_1} \sim N_2(\mu, \Sigma)$, with $\mu = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 3 & 1 & -2 \\ 1 & 1 & 4 \end{bmatrix}$, then the joint distribution of Y_1 , Y_3 and $\frac{1}{2}(Y_1 + Y_2)$ is

[Option ID = 17174]

2.
$$N_3 \begin{bmatrix} 2\\3\\0.5 \end{bmatrix}, \begin{bmatrix} 3&-2&2.0\\-2&2&1.0\\2.0&1.5&1.5 \end{bmatrix}$$

[Option ID = 17175]

3.
$$N_3 \begin{bmatrix} 2 \\ 3 \\ 0.5 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 2.0 \\ -2 & 2 & 1.0 \\ 2 & 1 & 1.5 \end{bmatrix}$$

[Option ID = 17176]

4. None of these

[Option ID = 17177]

Correct Answer :-

$$\bullet \ \ N_3 \begin{bmatrix} 2\\3\\0.5 \end{bmatrix}, \begin{bmatrix} 3&-2&2.0\\-2&2&1.0\\2&1&1.5 \end{bmatrix}$$

[Option ID = 17176]

31) Let X_1 , X_2 ,, X_n be a random sample from a distribution with finite mean μ . Consider an estimator $T = \bar{X}^2$ for estimating μ^2 . Which of the following statement is true?

www.FirstRanker.com

[Question ID = 4296]

1. T is unbiased and consistent

[Option ID = 17178]

2. T is neither unbiased nor consistent

[Option ID = 17179]

3. T is biased but consistent

[Option ID = 17180]

4. T is unbiased but not consistent

[Option ID = 17181]

Correct Answer :-

• T is biased but consistent

[Option ID = 17180]

32) Let X_1 , X_2 ,, X_n be a random sample from $U(-\theta,0)$ distribution. Maximum likelihood estimator of θ is

[Question ID = 4297]

1. $X_{(n)}$, the nth order statistic

[Option ID = 17182]

2. -X

[Option ID = 17183]

3. $X_{(1)}$, the first order statistic

[Option ID = 17184]

4. -X₍₁₎

[Option ID = 17185]

Correct Answer :-

-X₍₁₎

[Option ID = 17185]

33) Let X_1 , X_2 , ..., X_n be i.i.d $N(\mu, \sigma^2)$, both μ and σ^2 unknown. Which of the following is a minimal sufficient statistic for (μ, σ^2) ?

[Question ID = 4298]

1. (\bar{X}, s^2) , where $s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

www.FirstRanker.com

3. $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$

[Option ID = 17188]

4. All of these

[Option ID = 17189]

Correct Answer :-

All of these

[Option ID = 17189]

- 34) Which of the following tests can be considered as a non-parametric equivalent of one-way repeated measures ANOVA? [Question ID = 4299]
- 1. Kruskal-Wallis test [Option ID = 17190]
- 2. Mann-Whitney U test [Option ID = 17191]
- 3. Friedman test [Option ID = 17192]
- 4. Kolmogorov-Smirnov test [Option ID = 17193]

Correct Answer :-

- Friedman test [Option ID = 17192]
- 35) Consider a random sample of size 3 from an exponential distribution with mean θ . Let the critical region for testing $H_0: \theta = 2$ against $H_1: \theta = 1$ be defined as, $W = \{\underline{x}: x_1 + x_2 + x_3 \ge 9.5\}$.

Then, the size of the critical region and the power of the test will be, respectively?

[Question ID = 4300]

1. $P[Y \ge 9.5], P[Y \ge 19]; where Y \sim \chi^2_{(6)}$

[Option ID = 17194]

2. $P[Y \ge 9.5], P[Y \ge 19]; where Y \sim \chi^2_{(3)}$

[Option ID = 17195]

3. $P[Y \ge 9.5], P[Y \ge 19]; where Y \sim \exp(3)$

[Option ID = 17196]

4. $P[Y \ge 9.5], P[Y \ge 19]; where Y \sim \exp(6)$

[Option ID = 17197]

Correct Answer :-

• $P[Y \ge 9.5], P[Y \ge 19]; where Y \sim \chi^2_{(6)}$

[Option ID = 17194]

36) If χ be a negative binomial random variable with parameters n and p, then for n=1, χ will become:

[Question ID = 4301]

1. Geometric random variable

[Option ID = 17198]

2. Bernoulli random variable

[Option ID = 17199]

3. Binomial random variable

[Option ID = 17200]

4. Poisson random variable

[Option ID = 17201]

Correct Answer :-

Geometric random variable

[Option ID = 17198]

37) What is the minimum sample size necessary in order that we may conclude that a correlation coefficient of 0.32 is significantly greater than zero at a 0.05 level?

[Given $t_{(0.95)}$ = 1.71 (approx.) for 24, 25 and 26 degrees of freedom]

www.FirstRanker.com

[Question ID = 4302]

www.FirstRanker.com

[Option ID = 17203]

3. n=26

[Option ID = 17204]

4. n=24

[Option ID = 17205]

Correct Answer :-

• n=28

[Option ID = 17203]

38) Let X be a random variable/vector with sample space $\chi \square$ Rq and probability model P_a . The class of probability models ${m P}=\{P_{ heta}, heta\in\ {\it O}\}$ is a one-parameter exponential family with the density/pmf function as :

$$p(x|\theta) = h(x) \exp\{\vartheta(\theta)T(x) - B(\theta)\}\$$

here

 $h: \chi \to R$

 $\vartheta:\Theta\to R$

 $B: \Theta \rightarrow R$

then for what value of $B(\theta)$ the above pmf will have Binomial distribution?

[Question ID = 4303]

1. $B(\theta) = 1 - \log(\theta)$

[Option ID = 17206]

2. $B(\theta) = +n \log(1-\theta)$

[Option ID = 17207]
3.
$$B(\theta) = \frac{1}{\log(\theta)}$$

4.
$$B(\theta) = -n \log(1 - \theta)$$

[Option ID = 17209]

Correct Answer :-

• $B(\theta) = -n \log(1 - \theta)$

[Option ID = 17209]

39) Suppose that dependent variable Y regressed on four regressor variables and a constant. The following information is

Number of observations = 30

Total sum of squares (SST) = 400

Sum of Squared Errors (SSE) = 100

Then an unbiased estimate of σ^2 and the value of R^2 are:

[Question ID = 4304]

1. 4 and 0.75

2. 4 and 0.70

[Option ID = 17211]

3. 3 and 0.75

[Option ID = 17212]

4. 4 and 0.87

[Option ID = 17213]

Correct Answer :-

4 and 0.75

[Option ID = 17210]

www.FirstRanker.com

40) Which of the following step / assumption in regression modeling impacts the trade-off between under-fitting and over-

all equal to

[Question ID = 4306]

www.FirstRanker.com

[Option ID = 17218] 2. k
[Option ID = 17219] 3. λ
[Option ID = 17220] 4. <i>v</i>
[Option ID = 17221]
Correct Answer :- ・ え
[Option ID = 17220]
42) Consider a 2 ^s factorial experiment conducted in four blocks of size 8 each. If some of the elements of the key block are: (1), cd, abd, ae, bde, the other elements are
[Question ID = 4307] I. abe, abde, bd
[Option ID = 17222] 2. abc, acde, ce
[Option ID = 17223] 3. abc, acde, bce
[Option ID = 17224] 4. abe, acde, bce
[Option ID = 17225]
Correct Answer :- • abc, acde, bce
[Option ID = 17224]
43) For a 3 ³ factorial experiment, the entries of the key block in a replicate are: (1), bc ² , b ² c, ac ² , a ² c, ab ² , a ² b, abc, a ² b ² c ² . The confounded effect is [Question ID = 4308] 1. ab ² c ² [Option ID = 17226] 2. abc [Option ID = 17227] 3. ab ² c [Option ID = 17228] 4. abc ² [Option ID = 17229]
Correct Answer :- • abc [Option ID = 17227]
44) For a 2^6 factorial experiment conducted in 2^3 blocks of size 2^3 each, the total number of confounded effects is:
[Question ID = 4309] 1. 3
[Option ID = 17230] 2. 7
[Option ID = 17231] 3. 5
[Option ID = 17232] 4. None of these

45) In construction of a 2^{5-2} fractional factorial design, the generators D = AB and E = ABC are used. The alias set corresponding to the factorial effect BC is

[Question ID = 4310]

1.
$$BC = ACD = ACE = BDE$$

2.
$$BC = AD = ACE = BDE$$

3.
$$BC = ACD = AE = BDE$$

4.
$$BC = ACD = AE = DE$$

Correct Answer :-

• BC = ACD = AE = BDE

[Option ID = 17236]

46) Consider a population of NM elements grouped into N first stage units and M second stage units. A sample of n first stage units is selected. If n = N, this corresponds to

[Question ID = 4311]

1. Cluster sampling

[Option ID = 17238]

2. SRSWOR

[Option ID = 17239]

3. Stratified sampling

[Option ID = 17240]

4. None of these

[Option ID = 17241]

Correct Answer :-

Stratified sampling

[Option ID = 17240]

47) Consider a population of N units divided into two classes – response class (units that respond at first attempt) and non-response class (units that do not respond). n1 is the simple random sample of respondents drawn from the response class and n_2 is a simple random sample drawn from the non- response class. $n_2 = h_2 f$, where h_2 is the sub sample from the n_2 non-respondents. If S_2^2 is the population mean square for the non response class, variance of the unbiased estimator $\overline{\gamma_{kr}}$ of the population mean $\overline{\gamma}$ of variable of interest proposed by Hansen and Hurwitz is:

[Question ID = 4312]
1.
$$\frac{(f-1)}{n} \frac{n_2}{N} S_2^2$$

1.
$$\frac{(f-1)}{n} \frac{n_2}{N} S$$

[Option ID = 17242]
2.
$$\left(\frac{1}{n} - \frac{1}{N}\right) S^2 + \frac{(1-f)}{n} \frac{n_2}{N} S_2^2$$

[Option ID = 17243]
3.
$$\frac{(f-1)}{n} \frac{N_2}{N} S_2^2$$

4.
$$\left(\frac{1}{n} - \frac{1}{N}\right) S^2 + \frac{(f-1)}{n} \frac{N_2}{N} S_2^2$$

[Option ID = 17245]

Correct Answer :-

•
$$\left(\frac{1}{n} - \frac{1}{N}\right) S^2 + \frac{(f-1)}{n} \frac{N_2}{N} S_2^2$$

[Question ID = 4315]

- 1. 2355 trees [Option ID = 17254]
- 2. 2357 trees [Option ID = 17255]
- 3. 2250 trees [Option ID = 17256]
- 4. 2350 trees [Option ID = 17257]

Correct Answer :-

• 2357 trees [Option ID = 17255]

NNNFIISU