

www.FirstRanker.com

www.FirstRanker.com

(08 Marks).

	USN		LIBRARY CHIKOD1	15CV33
		Third Semester B.E. Degree Examination, Dec	c. aı	n.2020
	Tin	ne: 3 hrs.	M	ax. Marks: 80
		Note: Answer FIVE full questions, choosing ONE full question	n from each n	nodule.
7:3 7t	I	a. Define the following terms. Mention their units and dimensiOns (i) Mass density (ii) Weight density (iii) Specific Vo		Specific gravity (08 Marks)
$t_{0} = c_{4.7.} c_{0}$	enter	b. A U tube manometer is used to measure the pressure:of oil of in a pipe line. Its left end is connected to the pipe and right line of the pipe is 100 mm below the level of mercury (Sp.Gr = the difference of oil in the pipe.	mb is open to a = 13.6). In the	rity 0.85 flowing atmosphere. The ate right limb. If
o	2	a. State and prove Pascal's law. b. A 400 mm shaft is rotating at 200 rpm in a bearing of length 1 oil film is 1.4 mm and the dynamic viscosity of the oil is 0.7 line (i) Torque required to overcome friction in bearing. (ii) Power utilized.in overcoming viscous resistance. Assume a linear velocity profile.		
8 ,2 (1)	3	 Module-2 a. Derive an expression for total pressure on one side of an incleanter of pressure lies lower than its Centro id. b. If for a two dimensional potential flow, the velocity potent Determine. the velocity at the point P(4, 5). Determine also the the point P. 	itial is given	$\begin{array}{c} \textbf{(08 Marks)} \\ \textbf{by 4} \equiv x(2y-1) \end{array}$
. a ! 0 0 t 71	4	 OR a. Obtain an expression for continuity equation in three dimensions. b. A vertical Gate closes a horizontal tunnel 5 in high and 3 m. The pressure at the .bottom of the gate is 196.20 kN/m². Determined by the control of the centre of pressure. 	n wide runnin	
o <	5	 a. Obtain Euler's equation of motion along a stream tube are equation. List out the assumptions made. b. A horizontal venutrimeter with inlet diameter of 25 cm and the to measure. The flow of water. The pressure at the throat is 30 that at the inlet is200 KN/m² (gauge). Find the discharge of Cd = 0.98. 	roat diameter 0 cm of mercu	(08 Marks of 15 cm is used ary (vaccum) and

www.FirstRanker.com

OR

- 6 a. Derive the equation for the discharge through venturimeter. List out the assumptions m, (08 Man
 - b A 306 mm diameter pipe carries water under a head of 20 m, with a velocity of 3.5 m/s. i the axis of the pipe turns through 45°, find the magnitude and direction of the resultant force at the bend. (08 Marks)

Module-4

- a. Define various hydraulic coefficients of an orifice and derive the relation for discharge through an orifice.

 (08 Marks)
 - b. A rectangular notch 40 cm long is used for measuring a discharge of 30 1ps. An error cf 1.5 mm was made while measuring the head over the notch. Calculate the percent error in the discharge $C_d = 0.6$ (08 Marks)

OR

8 a. Derive an expression for discharge over a triangular notch.

(08 Marks)

b. A rectangular orifice 1.5 m wide and 1.0 m deep is discharging water form a tank. if the water level in the tank is 3 m above the top edge of the orifice, find the discharge througN.—the orifice. Take Cd = 0.6 (08 Marks)

Module-5

- 9 a. Derive the Darcy-Weisbach equation for head loss due to friction in a pipe. (08 Marks)
 - b. A compound piping system consists of 1800 m of 0.5 m, 1200 m of 0.4 m and 600 m of 0.3 m new cast iron pipes connected in series. Convert the system to,
 - (i) An equivalent length of 0.4 m pipe.
 - (ii) Equivalent size pipe 3600 m long.

(08 Marks)

OR

- a. Water is flowing in a pipe of 150 mm diameter with a velocity of 2.5 m/s. When it is suddenly brought to rest by closing the valve. Find the pressure rise assuming the pipe is elastic, given E = 200 GN/m², Poisson's ratio 0.25 and **K** for water = 2 GN/m², pipe wall is 5 mm thick.
 - b. Write short notes on: (i) Minor losses in pipe flow (ii) Hardy cross method
 - (iii) Water hammer in pipes.

(08 Marks