

www.FirstRanker.com

www.FirstRanker.com

15MATDIP41

Max. Marks: 80

Fourth Semester ME, Degree Examination, Dee.2019/Jan.2020 Additional Mathematics - II

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

	Module-1					
	a. Find the rank of the matrix by					
7			I 2 3 2			
			$A = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}$ by applying elementary row transformations.	(06 Marks)		
"c3			$\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ by applying elementary row transformations.			
		b.	Find the inverse of the matrix $\begin{bmatrix} I & 4 \\ & 3 \end{bmatrix}$ using Caylery-Hamilton theorem.	(05 Marks)		
ζ,		c.	Solve the following system of equations by Gauss elimination method. 4x + 4z = 12 $4x + 11$ $z = 33$ $8x + 3x + 2z = 20$	(05 Marks)		
OC						
ς; Ε			OR			
q)			-1 -3 -1			
O ^{crl} tu cid	2	a.	Find the rank of the matrix $\begin{vmatrix} \mathbf{OR} \\ -1 & -3 & -1 \\ 2 & 3 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -1 \\ 7 & -1 & 0 \end{vmatrix}$ by reducing it to echelon form.	(06 Marks)		
cf)						
-c; <u>8</u>						
00 20 <u>80</u>		b.	Find the eigen values of $A = \begin{bmatrix} -2 & 6 & -2 \end{bmatrix}$	(05 Marks)		
-EE'			Find the eigen values of A = $\begin{bmatrix} 7 & -4 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$			
		c.		-4- y - z = 3		
0				(05 marks)		
			NIoduk-2			
E o	2		Solve $\frac{d'y}{dx} + \frac{d'y}{dx^2 + 11} + \frac{dy}{dx} + 6y = 0$			
O E3 ;t2	3	a.	$\frac{301}{dx} + \frac{6}{dx^2} + \frac{1}{dx} + \frac{1}{dx} = 0$	(05 Marks)		
		b.	Solve y'' $4y' + 13y = \cos 2x$	(05 Marks)		
41 <u>-0</u>		c.	Solve by the method of undetermined coefficients $y'' + 3y' + 2y = 12x^2$	(06 Marks)		
CA			OR			
71.	_		Solve $\frac{d}{y} + 5\frac{dy}{d} + oy =$			
E > 0	4	a.	Solve $\frac{dy}{dx^2} + 5 - 4 $ oy =	(05 Marks)		
CS		b.	Solve $y'' + 4y' - 12y = e^2' - 3 \sin 2x$	(05 Marks)		
Ν			d v			
0		С	Solve by the method of variation of parameter $\frac{d y}{dx} + y = \tan x$	(06 Marks)		
CC			Module-3			
о 0	5	a.	Find the Laplace transform of			
U	-		i) $e^{-2} \sin h 4t$ ii) $e^{-2} (2\cos 5t - \sin 5t)$	(06 Marks)		
		b.	Find the Laplace transform of fit) = $t^2 0 < t < 2$ and $f(t + 2) = f(t)$ for $t > 2$.	(05 Marks)		
www.FirstRanker.com						
			1 of 2			

9

www.FirstRanker.com

www.FirstRanker.com

15MATDI P41

c. Express f(t) = ftL5 t > 4interms of unit step function and hence find L[t(t)]. (05 Marks)

OR ^{a.} Find the Laplace transform of i) t cosat ii) $\frac{\cos at - \cos bt}{t}$ 6 (06 Marks) b. Given $f(t) = \begin{bmatrix} E & 0 < t < a/2 \\ -E & a/2 < t < a \end{bmatrix}$ where f(t +) = f(t). Show that $L[f(t)] = \underset{S}{tan h} \frac{1}{4}$ (05 Marks) c. Express $f(t) = \begin{vmatrix} 0 < t < I \\ 1 < t < 2 \\ t > 2 \end{vmatrix}$ interms of unit step function and hence find L[f(t)].

(05 Marks)

Module-4							
7 a. Find the inverse Laplace transform or i)	$\frac{2s-I}{s^2+4s+29}$	ii) $s^{+2}_{+36} + \frac{4s-1}{s^{+}+25}$	(06 Marks)				
b. Find the inverse Laplace transform of log	$\frac{s^{-}+1}{s^{2}+4}$		(05 Marks)				
c. Solve by using Laplace transforms $y'' + 4y$	y' + 4y =	given that $y(0) = 0$, $y'(0) =$	= 0.				
			(05 Marks)				
0	R						

8 a. Find the inverse Laplace transform of $\frac{(s +)(s + 2)(5 +)}{(s - 1)(s - 2)(5 +)}$ (06 Marks) b. Find the inverse Laplace transform of $\cot^{-1} \frac{(5+a)}{(5+a)}$ (05 Marks)

C. Using Laplace transforms solve the differential equation y''' + 2y'' - 2y = 0 given y(0) = y'(0) = 0 and y''(0) = 6. (05 Marks) y(0) = y'(0) = 0 and y''(0) = 6.5(05 Marks)

Module-5

(06 Marks)

- a. State and prove Baye's theorem. b. The machines A, B and C produce respectively 60%, 30%, 10% of the total number of items _ of a factory. The percentage of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine "C". (05 Marks)
- e. The probability that a team wins a match is 3/5. If this team play 3 matches in a tournament, what is the probability that i) win all the matches ii) lose all the matches. (05 Marks)

OR

- a. If A and B are any two events of S. which are not mutually exclusive then 10 P(Au B) = P(A) + P(B) - P(AnB).(06 Marks)
 - b. If A and B are events with P(AnB) = 7/8, P(AnB) = 1/4, $P(g_{n}) = 5/8$. Find P(A), P(B) and P(A nii). (05 Marks)
 - C. The probability that 4: person A solves the problem is 1/3, that of B is 1/2 and that of C is 3/5. If the problem is simultaneously assigned to all of them what is the probability that the problem is solved? (05 Marks)

www.FirstRanker.com