FirstRanker.com

G®ตรschen

Fourth Semester ME, Degree Examination, Dee.2019/Jan. 2020 Additional Mathematics - II

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1
a. Find the rank of the matrix by

$$
\mathrm{A}=\left\lvert\, \begin{array}{lllll}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 1 \\
1 & 3 & 4 & 5
\end{array}\right. \text { by applying elementary row transformations. }
$$

b. Find the inverse of the matrix $\left|\begin{array}{ll}\text { I } & 4 \\ & 3\end{array}\right|$ using Caylery-Hamilton theorem.
c. Solve the following system of equations by Gauss elimination method.

$$
+y+4 z=12, \quad 4 x+11-z=33, \quad 8 x \quad 3 y+2 z 20
$$

(05 Marks)

OR

2 a. Find the rank of the matrix
b. Find the eigen values of $A=\left|\begin{array}{ccc}7 & -1 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5\end{array}\right|$ by reducing it to echelon form.
(06 Marks)
c. Solve by Gauss elimination method: $x+y+z=9, \quad x \quad 2 y+3 z=8, \quad 2 x-4-y-z=3$ (05 marks)
NIoduk-2
3 a. Solve $\frac{d^{\prime} y}{d x}{ }^{+6} \frac{d^{\prime} y}{d x^{2}}+11 \frac{d y}{d x}+6 y=0$
(05 Marks)
b. Solve $y^{\prime \prime} \quad 4 y^{\prime}+13 y=\cos 2 x$
(05 Marks)
c. Solve by the method of undetermined coefficients $y^{\prime \prime}+3 y^{\prime}+2 y=12 x^{2}$
(06 Marks)

OR

4 a. Solve $\underset{\mathrm{dx}^{\mathrm{d}}}{\dot{\prime}} \mathrm{z}+5 \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{oy}=$
(05 Marks)
b. Solve $y^{\prime \prime}+4 y^{\prime}-12 y=e^{2 \prime}-3 \sin 2 x$
(05 Marks)
c Solve by the method of variation of parameter $\left\lvert\, \frac{d y}{d x}+y=\tan x\right.$
(06 Marks)

Module-3

5 a. Find the Laplace transform of

> | i) $e^{-2} \sin h 4 t$ | ii) $e^{-2 \prime}(2 \cos 5 t-\sin 5 t)$ |
| :--- | :--- |

(06 Marks)
b. Find the Laplace transform of fit) $=\mathrm{t}^{2} 0<\mathrm{t}<2$ and $\mathrm{f}(\mathrm{t}+2)=\mathrm{f}(\mathrm{t})$ for $\mathrm{t}>2$.
(05 Marks)
c. Express $f(t)=\underset{L 5}{f t} \quad t>4 \quad$ interms of unit step function and hence find $L[t(t)]$. (05 Marks)

OR
6
a. Find the Laplace transform of i) t cosat
ii) $\frac{\cos a t-\cos b t}{t}$
(06 Marks)
b. Given $\mathrm{f}(\mathrm{t})=\begin{aligned} & \mathrm{E} \quad \mathrm{O}<\mathrm{t}<\mathrm{a} / 2 \\ & -\mathrm{E} \mathrm{a} / 2<\mathrm{t}<\mathrm{a}\end{aligned}$
where $f(t+)=f(t)$. Show that $\left.L[f(t)]=\tan _{S} h^{4} \frac{\text { as }}{4}\right)$
(05 Marks)
c. $\operatorname{Express} f(t)=\left\{\begin{array}{c}0<t<I \\ 1<t<2 \\ t>2\end{array} \quad\right.$ interms of unit step function and hence find $L[f(t)]$.
(05 Marks)

Module-4

7 a. Find the inverse Laplace transform or i) $\frac{2-2 s-1}{s^{2}+4 s+29}$
$\begin{array}{llll}\frac{s^{-}+1}{} & \text { ii) } \frac{s^{2}+2}{s^{2}+36}+\frac{4 s-1}{s^{2}+25} \\ \text { b. Find the inverse Laplace transform of log } & \\ \mathbf{s}^{2}+4\end{array} \quad$ (06 Marks)
c. Solve by using Laplace transforms $y^{\prime \prime}+4 y^{\prime}+4 y=\quad$ given that $y(0)=0, y^{\prime}(0)=0$.
(05 Marks)

8 a. Find the inverse Laplace transformof $\frac{(\mathrm{s}+)(\mathrm{s}+2)(5+)}{}$
(06 Marks)
b. Find the inverse Laplace transthrm of cot--I $\frac{(5+}{b}$
(05 Marks)
C. Using Laplace transforms solve the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}-2 y=0$ given $y(0)=y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=6$
(05 Marks)

Module-5

9 a. State and prove Baye's theorem.
(06 Marks)
b. The machines A, B and C produce respectively $60 \%, 30 \%, 10 \%$ of the total number of items of a factory. The percentage of defective output of these machines are respectively $2 \%, 3 \%$ and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine " C ".
(05 Marks)
e. The probability that a team wins a match is $3 / 5$. If this team play 3 matches in a tournament, what is the probability that i) win all the matches ii) lose all the matches.
(05 Marks)
OR
10 a. If A and B are any two events of S. which are not mutually exclusive then $\mathrm{P}(\mathrm{AuB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AnB})$.
(06 Marks)
b. If A and B are events with ${ }^{`} P(A n B)=7 / 8, P(A n B)=1 / 4, P(g)=,5 / 8$. Find $P(A), P(B)$ and $\mathrm{P}(\mathrm{A} n i i)$.
(05 Marks)
C. The probability that 4: person A solves the problem is $1 / 3$, that of B is $1 / 2$ and that of C is $3 / 5$. If the problem is simultaneously assigned to all of them what is the probability that the problem is solved?
(05 Marks)

