## Bes scheme

Third Semester B.E. Degree Examination, Dec.219/Jan. 2020 Network Analysis

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from

Max. Marks: 100
each module.

Module-1

1 a. Derive the expression for: (i) A to Y transformation (ii) Y to A transformation (10 Marks)
b. Calculate the voltage across the 6E2 resistor in the network of Fig.Q 1(b) using source shifting technique.


Fig.Q1(b)
(10 Marks)
OR
2 a. Determine the resistance between the terminals A and B of the network shown in Fig.Q2(a).


Fig.Q2(a)
(10 Marks)
b. Find currents in all the branches of the $n \quad$ own in Fig.Q2(b) using mesh analysis.
/ 14

6


Fig.Q2(b)
(05 Marks)
c. Find voltages $\mathrm{V}_{\mid}$and V 2 in the network shown in Fig.Q2(c) using node analysis method.


## Module-2

3
a. Obtain Thevenin's equivalent network for Fig.Q3(a).


Fig.Q3(a)
(08 Marks)
(06 Marks)
b. State and prove Miliman's theorem.
rem.


Fig.Q3(c)
(06 Marks)
OR
4 a. ./State and prove maximum power transfer theorem for AC circuits (when $\mathrm{R}_{\mathrm{L}}$ and XL art. 7 varying)
(10 Marks)
b. Find 'V' in the circuit shown in Fig.Q4(b) using super position theorem.

Fig.Q4(b)
(10 Marks)

## Module 3

5 a. What is the significance of initial conditions? Write a note on initial and final conditions for basic circuit elements.
(05 Marks) b. In the network shown in Fig. Q5(b) switch ' S ' is changed from A to $B$ at $t=0$ having already established a steady state in position A shown that at $t=0$, $\quad=i,=\begin{gathered}-V \\ R_{1}+R,+R,\end{gathered}$ and $\mathrm{i} 3=0$


Fig.Q5(b)
(10 Marks)
c. In the network of Fig.Q5(c) switch 'S' is closed at $t=0$ with zero initial current in the inductor. Find i, dt and ${ }_{d}^{\text {dti }}$ at $t=0^{+}$if $R=10 \mathrm{~S} 2 \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{V}=10$ Volts.

## OR

6 a. Obtain Laplace transform of:
(i) Step function
(ii) Ramp function
(iii) Impulse function
(10 Marks)
b. Find the Laplace transform of the waveform shown in Fig.Q6(b).


## Module 4

7 a. Derive the relation between bandwidth and quality factor $\mathrm{B} . \mathrm{W}=\mathrm{f}_{0} / \mathrm{Q}$.
(10 Marks)
b. Show that the value of capacitance for max voltage across the capacitor in case of capacitor
tuning series resonance is given by $C=R_{2^{2}+X^{\prime}} \cdot$

(10 Marks)
(10 Marks)

## OR

8 a. Derive for fO for parallel resonance circuit when the resistance of the capacitance is considered.


Fig.Q8(a)
(10 Marks)
b. Find the value of L for which the circuit in Fig.Q8(b) resonates at $\mathrm{co}=5000 \mathrm{rad} / \mathrm{sec}$.


## Module-5

9 a. Derive the expression of $Z$ parameters in terms of $Y$ parameters.
(10 Marks)
b. Determine $Y$ and $Z$ parameters for the network shown in Fig.Q9(b).


Fig.Q9(b)
OR
10 a. Derive the expression of h parameters in terms of ABCD parameters.
(10 Marks)
b. Find ABCD constants and show that $\mathrm{AD}-\mathrm{BC}=1$ for the network shown in Fig.Q10(b).


Fig.Q 1 0(b)

