www.FirstRanker.com

www.FirstRanker.com

# Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Engineering Electromagnetics**

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

| .Ŭ                                                                 |   | Madula 1                                                                                                                                                                                                                                                  |                                               |
|--------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1<br>P                                                             | 1 | a. Obtain an expression for electric field intensity at any given point due to 'n' numbe charges.                                                                                                                                                         | r of point<br>(04 Marks)                      |
| .•                                                                 |   | <ul> <li>b. Four 10 nC positive charges are located in the z = 0 plane at the corners of a square a side. A fifth 10 nC positive charge is located at a point 8 cm distant from the other</li> </ul>                                                      | e 8 cm on<br>er charges.                      |
| to ,,,<br><sup>m</sup> . =                                         |   | Calculate the magnitude of the total force on this fifth charge for $e = e_{o}$ .<br>C. Find the total charge contained in a 2 cm length of the electron beam for 2 cm $ cm and p_v = -5 e^{-100} PII.ic/m3.$                                             | (08 Marks)<br>z < 4 cm,<br>(08 Marks)         |
|                                                                    |   | OR                                                                                                                                                                                                                                                        |                                               |
|                                                                    | 2 | <ul><li>a. Define electric flux and electric flux density, and also, obtain the relationship electric flux density and electric field intensity.</li><li>b. Infinite uniform line charges of 5 nC/m lie along the (positive and negative) x and</li></ul> | between<br>( <b>06 Marks</b> )<br>l y axes in |
| :<br>::<br>!ft                                                     |   | <ul><li>free space, Find E at P(1, 2, 3).</li><li>c. Given a 60 JAC point charge located at the origin, find the total electric flux passing</li></ul>                                                                                                    | ( <b>10 Marks</b> )<br>through:               |
| $E'_{I,\overline{J}}$                                              |   | (i) That portion of the sphere $r = 26$ cm bounded by $0 < 0 < \frac{Tr}{2}$ and $0 < 14$ ) $r < \frac{Tr}{2}$ .                                                                                                                                          |                                               |
| $\stackrel{\text{el)} \stackrel{\text{"Z}}{\underset{C}{Z}}_{FIT}$ |   | (ii) The closed surface de fined by $p = 26$ cm and $z = \pm 26$ cm.                                                                                                                                                                                      | (04 Marks)                                    |
| 27 ce<br>>, t<br>4- 0                                              | 3 | a. State and obtain mathematicall f 1 i of Gauss law.                                                                                                                                                                                                     | (07 Marks)                                    |
|                                                                    |   | b. Given $\vec{D} = 6p \sin \frac{1}{2}a_{\pm} + p \cos \frac{0}{2}a_{\pm} C/m^2$ . Evaluate both sides of divergence                                                                                                                                     | e theorem                                     |
| 0,7. 0<br>a) 174<br>3 0                                            |   | for the region bounded by $p = 2m$ , sir = 0, (1) = $\pi$ rad, z = 0 and z = 5m.<br>c. Derive the point form of current continuity equation.                                                                                                              | (08 Marks)<br>(05 Marks)                      |
| 1% <b>ö</b>                                                        |   | OR                                                                                                                                                                                                                                                        |                                               |
| PD 72<br>>, t.•<br>(C) e.I)                                        | 4 | a. Given the non-uniform field $\vec{E} = \vec{v} \cdot \vec{x} + x \vec{a}_{v} + 2$ 'a, V/m, determine the work ex                                                                                                                                       | pended in                                     |
| P ><br>t.) ⊥⊥                                                      |   | carrying 2C from B(1, 0, 1) to A(0.8, 0.6, 1), along the shorter arc of the circle; x $z = 1$ .                                                                                                                                                           | $y^{2} + y^{2} = 1$ ,<br>(07 Marks)           |
| 8 3<br>: c.i                                                       |   | b. Derive the expression for potential field resulting from point charge in free-space.<br>c. Find the value of volume charge density at $p(r = 1.5 \text{ in}, 0 = 30^{\circ}, (I) = 50^{\circ})$                                                        | (07 Marks)<br>)°), when                       |
| °<br>Ž                                                             |   | $\dot{D}$ = 2rsin Ocos4; $\dot{l}ar$ +reosecos(1) $\dot{a}u$ —rsin4l $a$ , C/m <sup>2</sup> .                                                                                                                                                             | (06 Marks)                                    |
| ₿<br>E                                                             |   | Module-3                                                                                                                                                                                                                                                  |                                               |
| <u>с</u>                                                           | 5 | <ul><li>a. Using Gauss law derive Poisson and Laplace equations.</li><li>b. State and prove uniqueness theorem.</li></ul>                                                                                                                                 | (05 Marks)<br>(10 Marks)                      |

c. Calculate A 1.12 at  $P_2(4, \mathbf{W})$  is the finite form  $\mathbf{F}_1$  and  $\mathbf{F}_2(4, \mathbf{W})$  is the finite form  $\mathbf{F}_2(4, \mathbf{W$ (05 Marks)

Max. Marks: 100

**17EC36** 



USN

·...

FirstRanker.com

www.FirstRanker.com

## 17EC36

(05 Marks)

## OR

- a. Show that  $V^2 V = 0$ , for  $V = (5p^4 6p^{-4})\sin(44)$ . 6
  - b. Evaluate both sides of Stoke's theorem for the field H = 6xy $3y^2 a_y A/m$  and the rectangular path around the region, 2 x S 5, -1 y 1, z = 0. Let positive direction of d; be a, . (08 Marks)
  - c. State and explain Ampere's circuital law. Using the same, obtain the expression for H at any given point due to the infinite length filamentary conductor, carrying current I.

(07 Marks)

(05 Marks)

## **Module-4**

7 a. Obtain an expression for Lorentz force equation.

- b. Obtain the relationship between magnetic fields at the boundary of two different magnetic media. (09 Marks)
- c. Derive the expression for force between two infinitely long. Straight, parallel filamentary conductors, separated by distance d, carrying equal and opposite currents, I. (06 Marks)

#### OR

- 8 a. Given a ferrite material which operates in a linear mode with  $\mathbf{B} = 0.05$  T, calculate value.,... for magnetic susceptibility, magnetization and magnetic field intensity. Given J. = 50.
  - (05 Marks) b. Obtain expressions for magneto motive force (mmf) and reluctance in magnetic circuits by making use of analogy between electric and magnetic circuits. (08 Marks)
  - Two differential current elements,  $1_i A II = 3(10^{-6}) a_v Am at P_1(1, 0, 0)$  and c.

 $I,AL2 = 3(10^{-6})(-0.5ax+0.4a, +0.3az)$  Am at P2(2, 2, 2) are located in free space. Find

vector force exerted on  $1_101,2$  by 1,4L, .

(07 Marks)

# Module\_5

- 9 a. Explain the inadequacy of Ampere's circuital law for time-varying fields. Obtain a suitable correction for the same, which will remain consistent for both time and non-time-varying fields. (05 Marks)
  - b. Let  $pt = 10^{-5}$  H/m,  $B = 4 \times 1e$  F/m, 6 = 0 and p, = 0. Find K (including units) so that the following pair of fields satisfy Maxwell's equations:  $E = (20y - Kt)ax^V/m - Kt)ax^V/m - Kt = (20y - Kt)ax^V/m - (20y - Kt)ax^V/m - Kt = (20y - Kt)ax^V/m - ($

 $H = (y + 2x \ 10^6 t)$ , A/m.

e. Starting from Maxwell's curl equation, obtain the equation of Poynting's theorem and interpret the same. (10 Marks)

#### OR

- a. Express Maxwell's equations in phasor form as applicable to free-space. Using the same, 10 obtain vector Helmholtz equation in free space. (09 Marks)
  - b. Obtain an expression for skin depth when an electromagnetic wave enters a conducting medium. Also, calculate the skin depth when a 160 MHz plane wave propagates through aluminum of conductivity  $10^5$  U/m,  $E_r = M_r = 1$ (05 Marks)
  - Starting from equation of Faraday's law, obtain the point form of Maxwell's equation с. concerning spatial derivative of E and time derivative of H.

(05 Marks)