

www.FirstRanker.com

www.FirstRanker.com

18EC33

(06 Marks)

Max. Marks: 100

# Third Semester B.E. Degree Examination, Dec:20 '19-1Jan.2020 Electronic Devices

Time: 3 hrs.

USN

Note: ,'Inswer FIFE full questions, choosing ONE full question from each module.

#### Module-I

- a\_What are the types of Bonding forceses in solids? Explain.
- b. Explain the classification of material based on conductivity and energy band diagram.

(08 Marks) Find the conductivity of the intrinsic germanium at 300 K. If a donar type impurity is added to the extent of I atom/10<sup>7</sup> germanium atom assume =3800, vi<sub>p</sub> =1800, n<sub>1</sub> = 2.5 x10<sup>3</sup>,  $Q = 1.602 x10^{-19}$  (06 Marks)

#### OR

- 2 a. What are Direct and Indirect band gap semiconductor? Explain with examples. (08 Marks)
  - b. Explain the concentration of electron-hole pair in Intrinsic semiconductor with energy band diagram. (06 Marks)
  - c. Calculate the Intrinsic carrier concentration in Silicon at room temperature T = 300 K, where **B** is the material dependent parameter 5.4 x10<sup>31</sup> and F:, as the bandgap energy 1.12 eV, where K is the Boltzman constant = 8.62 X10<sup>-5</sup> eV/K. (06 Marks)

## Module-2

- 3 a. With energy band diagram, explain the doping level in extrinsic semiconductor at 0 K and at 50 K. (09 Marks)
  - b. What is the magnitude of HALL voltage in a N-Type germanium bar having an majority carrier concentration N<sub>1</sub>, =10<sup>'7</sup> cm<sup>3</sup>. Assume B = 0.2 Wb/m<sup>2</sup>, d = 2 mm, E = 10 V/cm.

c. Explain the effect of temperature on semiconductor.

### OR

- 4 a. Explain the qualitative description of current flow at P-N junction under equilibrium and biased condition. (08 Marks)
  - b Explain zener breakdown and avalanche breakdown under reverse biased P-N junction.

(06 Marks)

(05 Marks)

(06 Marks)

Discuss the piece-wise linear approximations of junction diode under ideal condition. (06 Marks)

### Module-3

- a. Explain the optical generation of carrier in a P-N junction\_\_\_\_\_(08 Marks)
  - b. Discuss the configuration of a solar cell in enlarged view of the planar junction. (06 Marks)
  - c. What is injectiOn-electroluminiscence and what are its applications? (06 Marks)

#### www.FirstRanken.com

u

ti) 172

ti 'g

0

tf)

•- a

E 51)

ra

C

Ζ

c.

5

FirstRanker.com

www.FirstRanker.com

#### OR

- 6 a. Explain 1-V characteristics of n-p junction as a function : of emitter current.
  - b. Discuss switching operation in common-emitter transistor.
  - c. Figure Q6 (c) shows the common emitter amplifier circuit. Calculate 1B and lc assume Tp = 10 pts, = 0.1 pi.s (06 Marks)



### Module-4

- 7 a. DraW and explain the 1-V characteristics of n-channel PNJFET for different biasing voltages. (07 Marks)
  - h. Draw and explain the small signal equivalent circuit of n-channel PNJFET. (07 Marks)
  - c. Explain the MOS structure with the aid of parallel-plate capacitor. (06 Marks)

#### OR

8 a. Explain the effect of frequency on. gate voltage of a MOS capacitor with a P-type substrate. (10 Marks)
b. Explain P-channel enhancement and depletion type MOSFET with their circuit symbols. (10 Marks)

#### Module-5

| 9 a. | With schematic diagram, explain ION-implantation system. | (07 Marks) |
|------|----------------------------------------------------------|------------|
| b.   | Explain low pressure chemical vapour deposition reactor. | (07 Marks) |
| c.   | Discuss photolithography.                                | (06 Marks) |
|      |                                                          |            |

#### OR

10a. What are the different types of integrated circuits and its advantages?(10 Marks)b. Explain the process of Integration.(10 Marks)

**18E** 

(08 Marks) (06 Marks)