

www.FirstRanker.com

www.FirstRanker.com

[B19EE1202]

I B. Tech II Semester (R19) Regular Examinations BASIC ELECTRICAL ENGINEERING ELECTRONICS & COMMUNICATION ENGINEERING MODEL QUESTION PAPER

TIME: 3Hrs.

Max. Marks: 75

Answer ONE Question from EACH UNIT.

All questions carry equal marks.

		UNIT-I	CO	KL	Μ
1.	•	State and explain Kirchhoff's Laws with example	CO:1	K2	8M
	(b).	Derive star-delta and delta- star Transformation for Equal resistances	CO:1	K3	7M
		(OR)	•		
2.	•	If 'n' number of resistances connected in parallel, derive the expression for the equivalent resistance?	CO:1	K2	8M
	(b).	Find Req for the given circuit $ \begin{array}{c} 4 \\ 0 \\ 8 \\ 8 \\ 6 \\ 9 \\ 8 \\ 6 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	CO:1	K3	7M
		UNIT-II			
3.	•	Discuss the Analysis of single-phase ac circuits consisting of pure inductor.	CO:2	K3	8M
	(b).	Find the average value, RM.S value, form factor and peak factor for the wave form shown in figure. Image: $T/2$ T T T T T T T T T T T T T T T T T T T	CO:2	K3	7M
		(OR)			
4.	•	Derive Average and RMS value of a sinusoidal waveform	CO:3	K5	8M

www.FirstRanker.com

	(b).	A 200 V, 50 Hz AC supply is applied to a coil of 0.08 H inductance	CO:2	K5	7M
		and 3.5 Ω Resistance connected in series with a 7.2 μ F capacitor.			
		Calculate (i) Impedance (ii) Current (iii) Phase angle between current			
		and voltage (iv) power factor (v) power consumed. UNIT-III			
5.			CO:2	K3	8M
5.	•	Derive the EMF equation of DC generator	CO.2	КJ	0111
	(b).	A shunt generator supplies a load of 7.5KW at 200V, Calculate the	CO:2	K3	7M
		generated emf if armature resistance is 0.6Ω and field resistance of 80Ω .			
		(OR)	1		
6.		Explain the speed control methods of DC shunt motor with neat	CO:3	K5	8M
		sketches			
	(b).	An 8-pole, wave-connected armature has 600 conductors and is driven	CO:2	K5	7M
		at 625 rev/min. If the flux per pole is 20 milli weber, determine the			
		generated E.M.F.			
		UNIT-IV			
7.		Explain the Principle of operation of single-phase transformer.	CO:4	K5	8M
	(b).	An ideal 25KVA Transformer has 500 turns on primary and 40 turns	CO:4	K4	7M
		on the secondary winding. The primary winding is connected to 3000			
		V, 50Hz supply. Calculate (i) Primary and secondary currents (ii)			
		Secondary EMF (iii) Maximum flux.			
		(OR)			
8.	•	Draw and explain Slip-Torque characteristics of Three phase Induction	CO:4	K3	8M
		Motor.			
	(b).	A 200 KVA rated transformer has a full-load copper loss of 1.5 kW	CO:4	K5	7M
	Ì,	and an iron loss of 1 kW. Determine the transformer efficiency at full			
		load & half load for 0.85 power factor			
		UNIT-V			
9.		Explain the working principle of Stepper motor.	CO:6	K2	8M
	(b).	Explain the working principle of capacitor start single-phase induction	CO:6	K5	7M
	l`´	Motor.			
		(OR)			
10.		(OR) Explain the working principle of BLDC motor.	CO:6	K2	8M
