[B19EE1201]

I B. Tech II Semester (R19) Regular Examinations CIRCUIT THEORY
 (Electrical \& Electronics Engineering)
 MODEL QUESTION PAPER

TIME: 3Hrs.
Answer ONE Question from EACH UNIT.
All questions carry equal marks.

	b).	shown below.	CO1	K3	7
		UNIT-II			
3.	a).	Explain Faraday's Law of Electromagnetic Induction	CO2	K2	8
	b).	For the magnetic circuit shown calculate the exciting current required to establish a flux of 2 mWb in the air-gap and relative permeability of the core is 2000. Neglecting fringing and leakage flux	CO2	K4	7
		\times OR			
4.	a).	Write abt the Analogy between Magnetic Circuit and Electrical Circuit	CO2	K2	8
	b).	For the following Circuit find V_{1} and V_{2}, if $L_{1}=0.4 \mathrm{H}, L_{2}=2.5 \mathrm{H}$ coefficient of cpling $\mathrm{K}=0.6$ and $i_{1}=4 i_{2}=20 \cos (500 \mathrm{t}-200) \mathrm{Ma}$	CO2	K4	7
		UNIT-III			
5.	a).	define the following: i) Amplitude of an alternating quantity ii) Instantanes value of an alternating quantity iii) Frequency iv) RMS value	CO3	K1	8

	b).	Two impedances, $(1+\mathrm{j} 1)$ ohm and $(1-\mathrm{j} 1)$ ohm are connected in parallel across a 10 V srce. Find the power supplied by the srce.	CO3	K4	7
		OR			
6.	a).	An impedance of ($3+\mathrm{j} 5$) is connected across a $10 \mathrm{~V}, 50 \mathrm{~Hz}$ srce. Find (i) power factor (ii) real and reactive power (iii) current drawn by the impedance.	CO3	K1	8
	b).	A R-L series circuit draws a current of 1 A when connected across a 10 V , 50 Hz AC. supply. Assuming the resistance to be 5 ohms , find the inductance of the circuit. What is its power factor?	CO3	K1	7
		UNIT-IV			
7.	a).	Define Quality factor, Band width with respect to parallel RLC circuit and draw the characteristics of parallel RLC circuit at resonance.	CO4	K1	8
	b).	For the following circuit compute average power delivered to each of the passive elements.	CO4	K4	7
		OR C			
8.	a).	For the following circuit plot locus of the eurre̊nt, mark the range current for maximum and minimum values of R and maximum power consumed by circuit.Assume $X_{L}=25 \mathrm{Ohm}$. The voltage is $200 \mathrm{~V}, 50 \mathrm{~Hz}$. j 25Ω	CO4	K4	8
	b).	A series RLC circuit with $\mathrm{R}=10 \mathrm{Ohm}, \mathrm{L}=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has an applied voltage $V=50 \angle 0$ with a variable frequency. Find the resonant frequency, the value of frequency at which maximum voltage occurs across the inductor and the value of frequency at which maximum voltage occurs across the capacitor.	CO4	K4	7

9. \mathbf{a} a). Find current I in the given circuit making use of super position theorem.
