

www.FirstRanker.com

www.FirstRanker.com

[B19 EE 1101]

I B. Tech I Semester (R19) Regular Examinations BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (MECHANICAL ENGINEERING) MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT

All questions carry equal marks *****

		UNIT-I	CO	KL	Μ				
1.	•	State and explain Kirchhoff's Laws with example	CO:1	K2	8M				
	(b).	Find Req for the given circuit	CO:1	K3	7M				
	(OR)								
2.	•	State and explain Superposition Theorem.	CO:2	K2	8M				
	(b).	If 'n' number of resistance connected in parallel, derive the expression for the equivalent resistance?	CO:1	K3	7M				
UNIT_II									
3.	•	Derive the expression for Average and RMS values of a sinusoidal waveform.	CO:2	K3	8M				
	(b).	Compute the Average and RMS values of a waveform shown in below figure: 20 V 0 0.1 0.2 0.3 0.4 t seconds	CO:2	К3	7M				
		(OR)							
4.	•	Explain the behavior of RL circuit connected to AC supply with neat Phasor diagram	CO:2	K2	8M				
	(b).	Draw and Explain Power Triangle	CO:2	K4	7M				

www.FirstRanker.com

www.FirstRanker.com

UNIT-III					
5.	•	Derive the EMF equation of DC generator.	CO:3	K2	8M
	(b).	An 8-pole, wave-connected armature has 600 conductors and is driven at 625 rev/min. If the flux per pole is 20 milli weber, determine the generated E.M.F.	CO:3	К3	7M
(OR)					
6.	•	Explain the speed control methods of DC shunt motor with neat sketches	CO:4	K5	8M
	(b).	Obtain the formula for Back EMF for different types of motors	CO:4	K3	7M
UNIT-IV					
7.	•	Explain the Principle of operation of single phase transformer	CO:3	K2	8M
	(b).	Obtain the formula for equivalent circuit referred to primary and secondary	CO:5	K3	7M
(OR)					
8.	•	Explain the Short circuit test on single phase transformer	CO:5	K4	8M
	(b).	Explain the principle and operation of Induction Motor	CO:3		7M
UNIT-V					
9.	•	Explain the operation of Diode in Forward and reverse bias conditions and draw V-I characteristics	CO:6	K3	8M
	(b).	Draw and explain input and tput Characteristics of CE configurations	CO:6	K3	7M
(OR)					
10.	•	Draw the circuit diagram of Bridge rectifier and explain its operation	CO:6	K3	8M
	(b).	Explain how the transistor acts as an amplifier	CO:6	K4	7M
