I B. Tech II Semester (R19) Regular Examinations
 ENGINEERING MECHANICS
 (MECHANICAL ENGINEERING) MODEL QUESTION PAPER

TIME: 3Hrs.
Max. Marks: 75 M

Answer ONE Question from EACH UNIT.

All questions carry equal marks.

			CO	KL	M
		UNIT-I			
1.	a).	State and prove Varignon's theorem.	1	K2	8
	b).	Two cylinders of diameter 100 mm and 50 mm , weighing 200 N and 50 N , respectively are placed in a trough as shown in Figure 1. Assuming smooth surfaces, find the reactions at the points of supports $1,2,3$ and 4 . Figure 1	1	K3	7
		OR			
2.	a).	A string ABC of length l carries a small pulley C from which a Load W is suspended as shown in Figure 2. The string hangs between two vertical walls which are at a distance d apart. The end A is higher than the end B by height h. Find the position of equilibrium defined by the angle α. Assume $d=l / 2$ and $h=l / 4$. Figure 2	1	K3	8
	b).	Two identical prismatic bars $\mathrm{AB} \& \mathrm{CD}$ each weighing 200 N are welded together to form a Tee and are suspended in a vertical plane as	1	K3	7

		shown in Figure 3. Calculate the values of the θ that the bar AB will make with the vertical when a vertical load of 200 N is applied at D . Figure 3			
		UNIT-II			
3.	a).	Derive the centriod of a wire bend in the form of a sector of an arc by taking the radius as ' r ' and angle of sector as ' θ '.	2	K3	8
	b).	Determine the centriod of the shaded segment for Figure 4 by taking a $=18 \mathrm{~m}$ and $\alpha=45^{\circ}$. Fígure 4	2	K3	7
		S OR			
4.	a).	Derive the moment of inertia of triangle abt its centriodal axis and also deduce the same abt its base.	2	K3	8
	b).	Determine the moment of Inertia of the T-section shown in Figure 5 abt its centroidal axis. Figure 5	2	K3	7

www.FirstRanker.com

5.	Find t the forces in all the members of a pin jointed truss as shown in Figure 6 by using method of Joints.	3	K3	8	

| | | additional weight Q applied on the left which will give a downward
 acceleration a 0.1 g to the weight W. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

