

www.FirstRanker.com

www.FirstRanker.com

(M19CST1101)

I M. Tech I SEMESTER (R19) Regular Examinations Model Question Paper Subject: Mathematical Fndation of Computer Science

(For CST)

Time: 3 Hrs

Г

Max. Marks 75

т

Т

Answer ONE question from EACH UNIT

All questions carry equal marks

			CO	KL	М
		UNIT - I			
1	a)	Suppose $f(x) = \frac{c}{3^x} for x = 1,2,3$ nthe probability function of a random variable X, then (i) determine the value of c (ii) find the distribution function of X & $P(X \ge 3)$	CO1	K2	7
	b)	The joint probability function of two discrete random variables X and Y is given by $f(x,y) = c (2x + y)$ where X and Y can assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$ and $f(x,y) = 0$ other wise. Find i) the value of c ii) E (X) iii) E(Y) iv) Var(X) and Var(Y).	CO1	К3	8
		(OR)			
2	a)	Let X and Y have joint density function $f(x, y) = \begin{cases} 2e^{-(x+y)} for x \ge 0; y \ge 0\\ 0 & otherwise \end{cases}$ Then find conditional expectation of(i) Y on X (ii) X on Y	CO2	K1	8
		Then find conditional expectation only 1 on X (ii) X on 1			
	b)	· ·	CO2	K2	7
		UNIT - II			
3	a)	It has been claimed that in 60% of all solar installations'utility bill reduced to by one- third.Accordingly, what are probabilities utility bill reduced to by at least one- third (i) in fr of five installations and (ii) at least fr of five installations	CO2	К2	8
	b)	Derive the mean, variance, coefficient skewness& kurtosis for Poisson's distribution	CO2	К3	7
		(OR)			
4	a)	If 20% of memory chips made in a certain plant are defective, then what are the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least25 will be defective (iiiin between 16 and 23 will be defective	CO2	К2	8
	b)	Derive the mean and variance of Exponential distribution.	CO2	К3	7

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

								UNIT - III			
5	a)	The following shows corresponding values of three variables X,Y,Z. Find least square regression equation Z= a+bx+cy							CO4	K3	8
		x	1	2	1	2	3				
		у	2	3	1	1	2				
		z	12	19	8	11	18				
	b)	Explain the procedure for fitting an exponential curve of the form $y = ae^{bx}$.									7
		(OR)									
6	a)	What the properties of a good estimator. Explain each of then								K1	7
	b)	Suppose that n observations X_1X_2 X_n are made from normal distribution and variance is unknown. Find the maximum likelihood estimate of the mean.								K3	8
		UNIT – IV									
7	a)	Prove that in any non- directed graph there is even number of vertices of odd degree.								K1	8
	b)	State and prove Euler's formula for planar graphs								К2	7
		(OR)									
8	a)	Prove that a tree with 'n' vertices have 'n-I' edges								K3	7
	b)	If T is a binary tree of n vertices, show that the number of pendant vertices is $\frac{(n+1)}{2}$								K1	8
		UNIT – V									
9	a)	Using the principles of Inclusion and exclusion find the number of integers between 1 and 100 that are divisible by 2 ,3 or 5							CO5	K3	7
	b)	Find the number of integral solutions for $x_1 + x_2 + x_3 + x_4 + x_5 = 50$ where $x_1 \ge 4$, $x_2 \ge 7$, $x_3 \ge 14$, $x_4 \ge 10$, $x_5 \ge 0$								K2	8
		(OR)									
10	a)	I	the on met		ence	relati	on a	$a_n - 7a_{n-1} + 12a_{n-2} = 0$ for $n \ge 2$ using Generating	CO5	K2	8
	b)	Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$ for $n \ge 2$.								K2	7

www.FirstRanker.com