(M19CST1101)

I M. Tech I SEMESTER (R19) Regular Examinations
 Model Question Paper
 Subject: Mathematical Fndation of Computer Science
 (For CST)

Time: 3 Hrs
Max. Marks 75

Answer ONE question from EACH UNIT
 All questions carry equal marks

			CO	KL	M
		UNIT - I			
1	a)	Suppose $f(x)=\frac{c}{3^{x}}$ for $x=1,2,3 \ldots \ldots \ldots$ the probability function of a random variable X , then (i) determine the value of c (ii) find the distribution function of X $\& P(X \geq 3)$	CO1	K2	7
	b)	The joint probability function of two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$ where X and Ycan assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$ and $f(x, y)=0$ other wise. Find i) the value of c ii) $E(X)$ iii) $E(Y)$ iv $\operatorname{Var}(X)$ and $\operatorname{Var}(\mathrm{Y})$.	CO1	K3	8
		(OR)			
2	a)	Let X and Y have joint density function $f(x, y)=\left\{\begin{array}{c}2 e^{-(x+y)} \text { for } x \geq 0 ; y \geq 0 \\ 0 \text { otherwise }\end{array}\right.$ Then find conditional expectation of (i) Y on X (ii) X on Y	CO 2	K1	8
	b)	$\checkmark \square$	CO 2	K2	7
		UNIT - II			
3	a)	It has been claimed that in 60% of all solar installations'utility bill reduced to by onethird.Accordingly, what are probabilities utility bill reduced to by at least one- third (i) in fr of five installations and (ii) at least fr of five installations	CO 2	K2	8
	b)	Derive the mean, variance, coefficient skewness\& kurtosis for Poisson's distribution	CO 2	K3	7
		(OR)			
4	a)	If 20% of memory chips made in a certain plant are defective, then what are the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least 25 will be defective (iiiin between 16 and 23 will be defective	CO 2	K2	8
	b)	Derive the mean and variance of Exponential distribution.	CO 2	K3	7

