

www.FirstRanker.com

www.FirstRanker.com

[M19CST1107]

I M. Tech I Semester (R19) Regular Examinations OPTIMIZATION TECHNIQUES Department of Computer Science and Engineering MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

			CO	KL	Μ
		UNIT - I			
1.	a).	State the optimization problem. Classify and explain varis types of	1	2	8
		optimization problems with examples			
	b).	Explain typical applications of operation research in industry	1	2	7
		OR			
2.	a).	Discuss the varis phases in solving an operations research problem.	1	3	8
	b).	State necessary & Sufficient conditions for multivariable optimization problem	1	2	7
		witht constraints			
-		UNIT - II			_
3.	a).	Discuss abt graphical solution revised simplex method	1	2	7
	b).	What is dual simplex method? explain in detail	1	2	8
	, ,				
4.	a).	Solve the following LPP by simplex method	2	3	1
		Minimize Z = -6x1 - 2x2 - 6x3			
		subject to $2x_1 - 3x_2 + x_3 \le 14$			
		$-4x1 + 4x2 + 10x5 \le 40$ 2x1 + 2x2 - 4x2 < 27			
		$2x_1 + 2x_2 - 4x_3 \ge 37$ $x_1 \ge 2x_2 \ge 1x_3 \ge 3$			
	b)	$\frac{x_1 \ge 2x_2 \ge 1x_3 \ge 5}{\text{Explain dual simpley method}}$	2	2	8
	0).		2	2	0
5	a)	Compare transportation problem with simplex method	2	2	7
5.	h)	Explain Kuhn-Tucker conditions min cost flow problem	2	2	8
	0).		2		0
6	a)	Explain max flow problem in detail	2	3	8
0.	b).	Explain Nonlinear programming problem	2	2	7
	- /.	UNIT - IV			
7.	a).	Discuss abt geometric programming	3	2	8
	b).	Briefly discuss abt scheduling and sequencing	3	3	7
		OR			
8.	a).	Explain different multi server models	3	2	8
	b).	Explain deterministic inventory models	3	2	7
		UNIT - V			
9.	a).	What is dynamic Programming? explain in detail	4	2	7
	b).	Explain abt Game theory simulation	4	2	8
		OR			
10.	a).	Explain abt single channel problem model	4	2	8
	b).	Discuss abt Elementary graph theory	4	2	7