www.FirstRanker.com

M19ST 1103]

I M. Tech I Semester (R19) Regular Examinations MATRIX ANALYSIS OF STRUCURES (Elective-I) (STRUCTURAL ENGINEERING) MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 Marks

Answer ONE Question from EACH UNIT

All questions carry equal marks

			CO	KL	M
		UNIT - I			
1.	a).	Explain degree of static indeterminacy and degree of kinematic	CO3	K2	7
		indeterminacy of structure with examples?.			
	b).	Discuss the procedure to develop Element stiffness matrix for truss	CO1	K2	8
		element, beam element and Torsional element			
		(OR)			
2.	a).	Explain 'Structural Idealization'	CO1	K2	5
	b).	Develop stiffness matrix for the given beam?			
		$\stackrel{?}{\longrightarrow} 1$ $\stackrel{4}{\longrightarrow} 3$	CO1	K6	10
		6m 6m 6m			
		UNIT - II			
3.	a).	Analyse the pin jointed truss given in figure below. Take $E = 2 \times 10^5 \text{ N/mm}^2$, $A=450 \text{ mm}^2$ and $L=3000 \text{ mm}$ for all elements. Use stiffness matrix method.			
		50kN	CO2	K4	10
	b).	Compare the force and displacement methods for the analysis of continus beams .	CO4	K4	5
		(OR)			
4.	a).	Analyse and draw the bending moment diagram for portal frame. Use stiffness matrix method.			
		40kN/m 50 kN 21 4m 1	CO2	K4	10
	b).	Discuss abt the stiffness of the pin jointed and rigid jointed frame	CO4	К3	5

www.FirstRanker.com

		UNIT - III			
5.	a).	Derive Stiffness matrix for a grid element.	CO3	K4	5
	b).	Formulate Stiffness matrix for the grid shown . EI = constant & GJ = constant for both the member. Take $GJ = 0.8 EI$.			
		10kN 3m	CO4	K6	10
		(OR)			
6.	a).	Analyse the grid structure ABC as shown in figure using stiffness matrix method. Take E=210 GPa ,G=84 GPa, J=4.6 x10 ⁻⁵ m ⁴ , I=16.6 x 10 ⁻⁵ m ⁴ for all elements.	COA	K4	10
		1.5m 1.5m	CO4	K4	10
	b).	Explain procedure for analysis of curved beam element in vertical plane deriving stiffness formulation	CO3	K2	5
		UNIT - IV			<u> </u>
7.	a).	Explain Banded matrix and semi band width Give examples how band	CO3	K2	7
		width can be reduced with nodal numbering scheme.			
	b).	Explain Method of static condensation	CO3	K2	8
8.	2)	(OR)	CO3	K2	7
0.	a).	Explain the procedure for incorporating Support Displacements	CO3		8
	b).	Explain the analysis of Beams on Elastic Fndations	CO3	K2	7
9.	a).	Explain the steps involved in the analysis of continus beams with and witht settlement.	CO3	K2	5
	b).	Analyse the beam shown in the figure, if the download settlements of supports B and C in t-m units are $\frac{200}{EI}$ and $\frac{100}{EI}$ respectively.	CO3	K4	10
	ļ .	(OR)	~-:		
10.	a).	Explain the analysis of gable frame by flexibility method using system approach	CO1	K2	5
	b).	Analyse the portal frame shown in figure, if the yielding of the support D to the right and down wards in t-m units are $\frac{20}{EI}$ and $\frac{50}{EI}$ respectively	CO3	K4	10
		12t 5m,I			

www.FirstRanker.com

www.FirstRanker.com

10m,4I	
--------	--

CO: Crse tcome KL: Knowledge Level

M: Marks

MMM FilstPainker.com