[M19 ST 1104]

I M. Tech I Semester (R19) Regular Examinations

ANALYTICAL\& NUMERICAL METHODS FOR STRUCTURAL ENGINEERING (STRUCTURAL ENGINEERING) MODEL QUESTION PAPER
TIME: 3 Hrs.

Answer ONE Question from EACH UNIT

All questions carry equal marks

			CO	KL	M
		UNIT - I			
1.	a).	Using the Laplace transform method solve the Initial Bndary Value Problem (IBVP) described as PDE $\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t}-\cos \omega t ; 0 \leq x<\infty, 0 \leq t<\infty$. Also given bndary conditions areu($u_{t}(\mathrm{x}, 0)=\mathrm{u}(\mathrm{x}, 0)=0$	CO1	K3	12
	b).	Write the Laplace transform of $\left\{\frac{1}{\sqrt{t}}\right\}$.	CO1	K2	3
		OR			
2.	a).	A string is stretched as fixed between two points $(0,0) \&(l, 0)$. Motion is initiated by displacing the string in the form of $u=\lambda \sin \left(\frac{\Pi x}{l}\right)$ and released from rest at time $t=0$. Find the displacement of any point on the string at any time t.	CO1	K3	12
	b).	State the heat conduction problem in semi - infinite rod.	CO1	K2	3
		UNIT - II			
3.	a).	Using the Frier transform method solve the solution of 2D Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, is valid in the half-plane, $\mathrm{y}>0$, is subjected to the condition U $(\mathrm{x}, 0)=0$ if $\mathrm{x}<0, \mathrm{u}(\mathrm{x}, 0)=1$ if $\mathrm{x}>0$ and $\lim _{x^{2}+y^{2} \rightarrow \infty} u(x, y)=0$ in the half plane.	CO2	K3	12
	b).	Write the change of scale property of Frier transforms	CO2	K2	3
		OR			
4.	a).	Find the curves on which the functional $\int_{0}^{1}\left(y_{1}{ }^{2}+12 x y\right) d x$ withy $(0)=0$ and $y(1)=1$ can be extremised.	CO2	K3	7
	b).	Show that the curve which extremises the functional $I=\int_{0}^{\frac{\pi}{4}}\left[\left(y^{\prime \prime}\right)^{2}-y^{2}+x^{2}\right] d x$ under the conditions	CO2	K3	8
		UNIT - III			
5.	a).	Verify that $\mathrm{u}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}$ is a solution of the Voltaerra Integral equation $u(x)=\sin x+2 \int_{0}^{x} \cos (x-t) u(t) d t$	CO3	K2	8

10.	a).	integral $\int_{0}^{1} \int_{x}^{2 x}\left(x^{2}+y^{3}\right) d y d x$	CO5	K3	7
	b).	Apply New Marks Method with suitable example	CO5	K3	8

CO: Crse tcome
KL: Knowledge Level
M: Marks

