

www.FirstRanker.com

[M19PS1108]

I M. Tech I Semester (R19) Regular Examinations ADVANCED DIGITAL SIGNAL PROCESSING Electrical & Electronics' Engineering Department MODEL QUESTION PAPER

TIME: 3Hrs. Max. Marks: 75 M

Answer ONE Question from EACH UNIT.

All questions carry equal marks.

		****	CO	KL	M
		UNIT-I		IXL	TAT
1.	a)	What is multi rate signal processing? Explain any two	1	K2	8M
1.	(a)		1	182	OIVI
	1)	applications of multi rate signal processing?	-	172	73.4
	b)	Derive the frequency domain transfer function of a	1	K3	7M
		decimator. OR			
2.	9)	Write a brief notes on lattice structures. Mention the	1	K1	8M
4.	a)	advantages of lattice structures. Mention the	1	K1	OIVI
	b)	Draw and explain the lattice ladder structure for	1	K1	7M
		realization of pole zero system	1	17.1	/141
		realization of pole zero system			
		UNIT-II		+	
3.	a)	Give a brief accnt of poly phase filter structures.	2	K1	7M
	b)	Discuss clearly the process of sampling rate conversion	2	K2	8M
		of band pass signals.			
		OR		1	
4.		Explain in detail Bilinear transformation method of IIR	2	K2	15M
		filter design			
		UNIT-HI			
5.		Discuss abt the computation of the discrete Frier	3	K2	15M
		transform with an example			
		OR			
6.		Explain in detail abt Tunable digital filters	3	K2	15M
		UNIT-IV			4 == -
7.	a)	What are the quantization errors in FFT algorithm?	4	K2	15M
	1 \	Explain them.	4	170	
	b)	Explain abt the errors result that from the truncation	4	K2	
		and rnding with an example		1	
0		OR Discuss the procedure for the design of IIR filters and	4	K2	15M
8.		what are the constraints in the design of IIR filters using	4	NZ	121/1
		analog structures			
		androg structures			
		UNIT-V		+	
9.	a)	What is the basic principle of parametric methods in	5	K2	8M
	",	power spectral estimation? Discuss varis techniques in			0.14.
	1	Francisco Production Commencer States and Auto Commencer III	ı	1	<u> </u>

www.FirstRanker.com

www.FirstRanker.com

		parametric method.			
	b)	Derive the mean and variance of the power spectral estimate of the Blackman Tuckey method.	5	K3	7M
		estimate of the Biackman Tuckey method.			
		OR			
10.		Determine the mean and the auto correlation of the sequence $x(n)$ generated by the MA(2) process described by the difference equation. $X(n) = w(n) - 2 w(n-1) + w(n-2)$ Where $w(n)$ is the white noise process with variance σ^2 w.	5	К3	15M

www.FirstRanker.com