[M19P1107]

I M. Tech I Semester (R19) Regular Examinations
 OPTIMIZATION TECHNIQUES
 Electrical \& Electronic's Engineering Department MODEL QUESTION PAPER

TIME: 3Hrs.
Max. Marks: 75 M
Answer ONE Question from EACH UNIT.
All questions carry equal marks.
$* * * * *$

	$-\left(\mathrm{X}_{1}-2\right)^{2}+\mathrm{X}_{2} \leq 3$ by Kuhn- Tucker conditions			
	OR			
6.	Solve the following problem by Powell's method (Use pattern search directions) Minimize $f\left(X_{1}, X_{2}\right)=4 X_{1}{ }^{2}+3 X_{2}{ }^{2}$ $-5 \mathrm{X}_{1} \mathrm{X}_{2}-8 \mathrm{X}_{1}$ from starting point $(0,0)$.	1	K4	15M
	UNIT-IV			
7.	Minimize $f\left(X_{1}, X_{2}\right)=6 x_{1}{ }^{2}+3 x_{2}{ }^{2}+4 x_{1} x_{2}$ subject to $x_{1}+x_{2}-5=0$ solve the problem by using the interior penalty function approach.	1	K3	15M
	OR			
8.	Minimize $f\left(X_{1}, X_{2}\right)=1 / 3\left(x_{1}+1\right)^{3}+x_{2}$ subject to $g_{1}\left(X_{1}, X_{2}\right)$ $1-x_{1 \leq} 0, g_{2}\left(X_{1}, X_{2}\right)=-x_{2 \leq} 0$. solve the problem by using an exterior penalty function approach.	1	K2	15M
	UNIT-V			
9.	Using Fibonacci method minimize $\mathrm{Z}=12 \mathrm{x}-3 \mathrm{x}^{4}-2 \mathrm{x}^{2}$ Take the initial interval as $[0,2]$ and $n=6$. Calculate the interval of uncertainty after 6 cycles.	1	K3	15M
	OR			
10.	Find the minimum function $f(x)=0.65-\left(0.75 /\left(x^{2}+1\right)\right)-$ $(0.65 x) \tan ^{-1}(1 / x)$ using the quadratic interpolation method with an initial step size of 0.1 . show calculations for two refits.	1	K3	15M

