

www.FirstRanker.com

[M19 ST 1105]

I M. Tech I Semester (R19) Regular Examinations DESIGN OF REINFORCED CONCRETE FNDATIONS STRUCTURAL ENGINEERING MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 Marks

Answer ONE Question from EACH UNIT

All questions carry equal marks *****

			CO	KL	Μ
		UNIT - I			
1.	a).	Explain the design requirements of the fndation.	CO1	K4	5
	b).	Design a concrete pedestal for supporting a steel column carrying a total factored			
		load of 1700kN. The size of the base plate is 300 mm square. Assume grade 25	CO2	K6	10
		concrete and Fe 415 steel.			
		(OR)			
2.	a).	Explain the general procedure for design of square or rectangular footing.	CO2	K4	5
	b).	A solid footing has to transfer a dead load of 1000kN and an imposed load			
		400kN from a square footing 400 X 400 mm (with 16 mm bars). Assuming	CO2	K6	10
		$f_y = 415 \text{ N/mm}^2$, $f_{ck} = 20 \text{ N/mm}^2$, and safe bearing capacity to be 200 KN/m ²			
		.Design the footing.			
		UNIT - II			
3.	a).	Explain the types of fndations of partitions walls in grnd floors	CO1	K4	5
	b).	A brick wall of 250mm thick of a two-storeyed building is to rest directly on a			
		R.C strip footing. Design the footing assuming the soil is sandy and its safe	CO2	K6	10
		bearing capacity to be 100kN/mm ² .			
		(OR)			
4.	a).	Explain the different methods of analysis of continus strip footing for un	CO1	K4	5
		symmetric loading.			
	b).	A series of five columns is to be supported on a 20m x 2m strip fndation.			
		Determine the Shear force and Bending moment for design. Assume safe bearing	CO2	K5	10
		capacity as 100kN/m ² The loads are 300,350,400,450 and 500kN at			
		2,7.5,11.5,15,18 m from one end.			
_		UNIT - III			
5.	a).	Explain abt the rigid and Flexible Fndations.	CO1	K4	71/2
	b).	Explain abt the deflection requirements of beams and slabs in rafts.	CO3	K4	71⁄2
		(OR)			
6.	a).	Explain the different types of raft fndation.	CO3	K4	5
	b).	Design a flat slab raft with edge beam for a layt of column loads by Direct			
		Design Method. Assume the safe bearing capacity from settlement considerations	CO4	K6	10
		as 50kN/m ² .Assume columns are 300 x 300 mm enlarged to 600 x 600 mm as			
		capital			
		UNIT - IV			
7.	a).	Discuss abt the estimation of settlement of piles in detail	CO3	K3	5
	b).	A bored pile of total length 13.2 m is with enlarged base has a shaft diameter of			

www.FirstRanker.com

www.FirstRanker.com

		600 mm and in the last 1.2m, it is enlarged to 1200 mm diameter. If the SPT (N)	CO3	K5	10
		value of clay in which the shaft is installed is 13 and that of the enlarged portion			
		is 15, estimate the settlement at the ultimate load of the pile.			
		(OR)			
8.	a).	Explain abt the conventional analysis of annular rafts.	CO4	K4	5
	b).	The load from a circular water tank supported by six columns rests on a ring			
		beam, which in turn, rests on an annular raft. Assuming the mean radius of the	CO2	K6	10
		centres of column line is 8m and the total load from the tank is 30,000kN. Design			
		the ring beam.			
		UNIT - V			
9.	a).	Explain abt the significance of under -reamed piles for expansive soils.	CO3	K4	5
	b).	The main brick wall of a room of a residential building is 225 mm thick and has a			
		loading of 40kN/m at the fndation level. Another cross wall of the same	CO3	K6	10
		thickness joins it and transmits a concentrated load of 35 kN. Design a layt of			
		under reamed piles and grade beam for the fndation of the main wall			
		(OR)			
10.	a).	Discuss abt the significance of Earth pressure on rigid walls	CO1	K5	5
	b).	Design a cantilever retaining wall with level backfill to retain 4 m of earth		K6	10
		($\phi = 30^{\circ}$) of unit weight of 19 kN/m ²	CO2		

CO: Crse tcome KL: Knowledge Level M: Marks

www.firstRanker.com