Max. Marks: 75 M

[M19 IT 1102]

RAJU

ENGINEERING I M. Tech I Semester (R19) Regular Examinations ADVANCED DATA STRUCTURES

Department of Information Technology MODEL QUESTION PAPER

TIME: 3 Hrs. Answer ONE Question from EACH UNIT

All questions carry equal marks

			CO	KL	M
		UNIT - I			
1.	a).	Identify the basic requirements to achieve good Hashing mechanism.	1	3	8
	b).	Classify different collision resolution techniques	1	4	7
		OR			
2.	a).	Apply Following elements 76, 40, 48, 05, 55 to inserted into an empty hash table	1	3	8
	1 \	with hash function $f(x) = x\%$ 7 for quadratic probing.			 _
	b).	Distinguish the importance of Dble Hashing with example.	1	4	7
		UNIT - II			+
3.	a).	Analyze deterministic Skip Lists	2	4	7
	b).	Identify Update Operations on Skip Lists.	1	3	8
		OR			
4.	a).	Identify Search operations on Skip lists.	1	3	7
	b).	Analyze Probabilistic Analysis of Skip Lists.	1	4	8
	1	UNIT - HI			
5.	a).	Construct Binary Search tree with values 13, 3, 4, 12, 14, 10, 5, 1, 8, 2, 7, 9, 11, 6, 18	4	4	8
	b).	Construct Red Balck tree algorithm with example	4	4	7
		OR			
6.	a).	Construct a AVL trees, using the result of inserting values 3, 1, 4, 6, 9, 2, 5, 7	4	4	8
		into an initially empty AVL tree?			
	1)	C D 100 T 11	2	1	- 7
	b).	Compare B-trees and 2-3 Trees with example	2	4	7
		UNIT - IV	2	1	0
7.	a).	Analyze Boyer-Moore Algorithm with some example	3	4	8
	b).	Analyze Longest Common Subsequence Problem(LCS)	3	4	7
0		OR	2	1	7
8.	a).	List the advantages and disadvantages of Tries	3	4	7
	b).	Analyze Brute-Force Pattern Matching UNIT - V	3	4	8
0			A	2	-
9.	a).	Apply Two Dimensional Range Searching	4	3	7
	b).	Construct a Priority Search Tree with example	4	4	8
10		OR Identify Decent transfe in Heshing and Trace	4	2	0
10.	a).	Identify Recent trends in Hashing and Trees	4	3	8
	b).	Constuct K-D Trees with example	4	4	7