(M19IT1101)

I M.Tech I SEMESTER (R19) Regular Examinations DISCRETE MATHEMATICAL STRUCTURES
 Department of Information Technology

Time: 3 Hrs
Max. Marks 75
Answer ONE question from EACH UNIT
All questions carry equal marks

			CO	KL	M
		UNIT - I			
1	a)	Solve for the value of c , distribution function of X and $P(X \geq 3)$, given $f(x)=\frac{c}{3^{x}}$ for $x=1,2,3 \ldots \ldots \ldots n$ as the probability function of the random variable X .	CO1	K3	7
	b)	The joint probability function of two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$ where X and Y can assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$ and $f(x, y)=0$ other wise. Solve for i) the value of c ii) E (X) iii) $\mathrm{E}(\mathrm{Y})$ iv) $\operatorname{Var}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{Y})$.	CO1	K3	8
		(OR)			
2	a)	Let X and Y have joint density function $f(x, y)=\left\{\begin{array}{c} 2 e^{-(x+y)} \text { for } x \geq 0 ; y \geq 0 \\ 0 \text { otherwise } \end{array}\right.$ Then find conditional expectation of(i) Y on X (iii) X on Y	CO 2	K1	8
	b)	V	CO 2	K3	7
		UNIT- II			
3	a)	It has been claimed that in 60% of all solar installations, 'utility bill reduced to by one- third. Identify the prebabilities for the utility bill reduce by at least one- third (i) in fr of fiye installations and (ii) at least fr of five installations	CO 2	K3	8
	b)	Utilize probability mass function of Poisson's distribution to determine its mean, variance, coefficient skewness \& kurtosis.	CO 2	K3	7
		(OR)			
4	a)	If 20\% of memory chips made in a certain plant are defective, then identify the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least 25 will be defective (iii in between 16 and 23 will be defective	CO 2	K3	8
	b)	Make use of pdf of the Exponential distribution to find its mean and variance	CO2	K3	7

