

www.FirstRanker.com

www.FirstRanker.com

(M19IT1101)

I M.Tech I SEMESTER (R19) Regular Examinations DISCRETE MATHEMATICAL STRUCTURES Department of Information Technology

Time: 3 Hrs

Max. Marks 75

Answer ONE question from EACH UNIT

All questions carry equal marks

			CO	KL	Μ
		UNIT - I			
1	a)	Solve for the value of c, distribution function of X and $P(X \ge 3)$, given $f(x) = \frac{c}{3^x} for x = 1,2,3 \dots \dots n$ as the probability function of the random variable X.	CO1	K3	7
	b)	The joint probability function of two discrete random variables X and Y is given by $f(x,y) = c (2x + y)$ where X and Y can assume all integers such that $0 \le x \le 2, 0 \le y \le 3$ and $f(x,y) = 0$ other wise. Solve for i) the value of c ii) E (X) iii) E(Y) iv) Var(X) and Var(Y).	CO1	K3	8
		(OR)			-
2	a)	Let X and Y have joint density function $f(x,y) = \begin{cases} 2e^{-(x+y)} for x \ge 0; y \ge 0\\ 0 & otherwise \end{cases}$ Then find conditional expectation of(i) Y on X (ii) X on Y	CO2	K1	8
	b)		CO2	K3	7
		UNIT - II			
3	a)	It has been claimed that in 60% of all solar installations, 'utility bill reduced to by one- third. Identify the probabilities for the utility bill reduce by at least one- third (i) in fr of five installations and (ii) at least fr of five installations	CO2	K3	8
	b)	Utilize probability mass function of Poisson's distribution to determine its mean, variance, coefficient skewness & kurtosis.	CO2	K3	7
		(OR)			
4	a)	If 20% of memory chips made in a certain plant are defective, then identify the probabilities, that a randomly chosen 100 chips for inspection (i) at most 15 will defective (ii) at least25 will be defective (iii in between 16 and 23 will be defective	CO2	K3	8
	b)	Make use of pdf of the Exponential distribution to find its mean and variance	CO2	K3	7

www.FirstRanker.com

		UNIT - III			
5	a)	The following table shows corresponding values of three variables X, Y,Z.	CO4	K3	8
		Model the least square regression equation $Z = a+bx+cy$			
		x 1 2 1 2 3			
		y 2 3 1 1 2			
		z 12 19 8 11 18			
	b)	Explain the procedure for fitting an exponential curve of the form $y = a e^{bx}$.	CO4	K5	7
	,	(OR)			
6	a)	What the properties of a good estimator. Explain each of them	CO3	K1	7
	b)	Suppose that n observations X_1, X_2, \dots, X_n aremade from normal distribution	CO3	K3	8
		and variance is unknown. Identify the maximum likelihood estimate of the			
		mean.			
		UNIT – IV			
7	a)	Show that in any non- directed graph there is even number of vertices of	CO4	K1	8
	•	odd degree.	~ ~ ~		_
	b)	State and prove Euler's formula for planar graphs	CO4	K2	7
0		(OR)	004	IZ O	7
8	a)	Prove that a tree with 'n' vertices have 'n-1' edges	CO4	K3	/
	b)	If I is a binary tree of n vertices, show that the number of pendant vertices is $\binom{n+1}{2}$	CO4	KI	8
		$\frac{(n+1)}{2}$			
		UNIT – V			
9	a)	Make use of the principles of Inclusion and exclusion find the number of integers between 1 and 100 that are divisible by 2,3 or 5	CO5	K3	7
	b)	Identify the number of integral solutions for $x_1 + x_2 + x_3 + x_4 + x_5 =$	CO5	K3	8
		50 where $x_1 \ge 4$, $x_2 \ge 7$, $x_3 \ge 14$, $x_4 \ge 10$, $x_5 \ge 0$			
		(OR)			
10	a)	Solve the recurrence relation $a_n - 7a_{n-1} + 12a_{n-2} = 0$ for $n \ge 2$ using	CO5	K3	8
		Generating function method.			
	b)	Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$ for $n \ge 2$.	CO5	K3	7
	l				