

www.FirstRanker.com

[M19 IT 1106]

I M. Tech I Semester (R19) Regular Examinations **OPTIMIZATION TECHNIQUES Department of Information Technology** MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT

All questions carry equal marks *****

			CO	KL	Μ
		UNIT - I			
1.	a).	Classify and explain varis types of optimization problems with examples.	1	4	8
	b).	Identify the necessary & sufficient conditions for multivariable optimization problem witht constraints.	1	3	7
		OR			
2.	a).	solve the maximum or minimum of the function $f(x)=x_1^2+x_2^2+x_3^2-4x_1-8x-12x_3+56$	1	4	8
	b).	Distinguish the gradient of the function and its importance in optimization.	1	4	7
		UNIT - II			-
3.	a).	Identify transportation problem and represent it mathematically.	2	3	7
	b).	Min $f(x) = x_1^2 - x_1 x_2 + 3x_2^2$. Starting point (1,2) by using steepest descent method. Solve calculations for two cycles.	1	4	8
		OR			
4.	a).	Solve the following non-LPP by Lagrangian multiplier method: Min Z= $4x_1^2 + 2x_2^2 + x_3 - 4x_4 + x_3 + x_4 + x_5 = 15$, $2x_4 - x_3 + 2x_5 = 20$ and $x_2 \ge 0$ ¥ i	2	4	7
	b)	$\frac{4x_1 + 2x_2 + x_3 - 4x_1x_2}{12}$ St $x_1 + x_2 + x_3 - 13$, $2x_1 - x_2 + 2x_3 - 20$ and $x_1 - 0 \neq 1$ Identify the Kuhn-Tucker conditions min cost flow problem	2	3	8
	6).	UNIT - III	_	5	
5.	a).	Compare single server and multiple server models	2	4	8
	b).	List t Probabilistic inventory control models	2	4	7
		OR			
6.	a).	Classify the terminologies involved in dynamic programming.	2	4	8
	b).	Identify the importance of gradient methods.	2	3	7
		UNIT - IV			
7.	a).	Classify the characteristics of a constrained non-linear programming problem.	3	4	8
	b).	Identify the suitable examples for design constraints and objective function	3	3	7
		OR			
8.	a).	Analyze Greedy algorithm with example	3	4	7
	b).	Prove that a graph of <i>n</i> vertices is a complete graph if its chromatic polynomials $P_n(\lambda) = \lambda (\lambda - 1) (\lambda - 2) \dots (\lambda - n + 1)$	4	5	8
		UNIT - V			1
9.	a).	Identify necessary and sufficient conditions of non-LPP with single	3	3	7

www.FirstRanker.com

www.FirstRanker.com

		equality constraint.			
	b).	A company produces two types of hats. Each hat of first type requires	3	4	8
		twice as much as labr time as second type. If all hats are of the			
		second type only, the company can produce a total of 500 hats a day.			
		The market limits daily sales of the first and second type to 150 and			
		250 hats. Assuming that the profits per hat are Rs.8 for type A and Rs.5			
		for type B, In the stated problem solve:			
		a) Design Vector b) Objective Function			
		OR			
10.	a).	Classify balanced transportation problem.	4	4	8
	b).	List t varis methods for finding an initial basic feasible solution	4	4	7
		for a transportation problem.			

www.firstRanker.com