

www.FirstRanker.com

[M19 ST 1106]

I M. Tech I Semester (R19) Regular Examinations BRIDGE ENGINEERING STRUCTURAL ENGINEERING MODEL QUESTION PAPER

TIME: 3 Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT

All questions carry equal marks *****

			CO	KL	Μ
		UNIT - I			
1.	a).	Identify different types of loads on a concrete bridge according to IRC.	1	K3	7
	b).	Make use of general design requirements in design of concrete bridges.	1	K3	8
		OR			
2.	a).	Identify different types of bridges.	1	K3	7
	b).	Organize distribution of concentrated loads in design of deck slabs.	1	K3	8
		UNIT - II	_		
3.		Distinguish betweenPigeauds method and Hendry-Jaugar method.	2	K4	15
		OR			
4.		A reinforced concrete T beam bridge is to consist of 5 beams 1.75 m apart.	2	K4	15
		The span of the bridge is 12m clear with end bearings of 600 mm. The live			
		load on the bridge 17kN/m ² including impact. The carriageway over the			
		bridge is to be 7 m wide with a footpath of 1.5 m width on other side. The			
		loading on the footpath may be taken as 3.9 kN/m^2 . Design the bridge. Use			
		M20 grade concrete and Fe415 steel.			
		UNIT - III			
5.		Design a reinforced concrete box culvert having a clear vent way of 3m x 3m.	2	K4	15
		The superimposed dead load on the culvert is 12.8 kN/m^2 . The live load is			
		estimated as 50 kN/m ² . Density of soil at site is 18 kN/m ³ . Angle of repose is 30° .			
		Adopt M20 grade concrete and Fe415 steel. Sketch the details of reinforcement in			
		the box culvert. The design shld conform to the specifications IRC: 112 -2011.			
		OR			
6.		Design a reinforced concrete box culvert with inside dimensions 3m height and	2	K4	15
		4.5 m width. The box culvert has to carry a superimposed load of 10 kN/m^2 and a			
		live load of 50 kN/m ² . The density of soil is 20 kN/m ³ . Angle of repose is 30° .			
		Adopt M20 grade concrete and Fe415 steel. Sketch the details of reinforcement in			
		the box culvert.			
7		UNII - IV	1	V 4	15
1.		Design an un-stiffened welded plate girder with THICK web, for a simply	4	K 4	15
		supported bridge with a clear span of 24 m, subjected to a factored bending			
		moment 4800 kN-m and factored Shear force 1000 kN. The girder carries			
		two factored moving loads of 180 kN each spaced at 2 m center to centre.			
		The plate girder is restrained laterally and prevented from rotation.			

www.FirstRanker.com

	OR							
8.	Design an un-stiffened welded plate girder with THIN web, for a simply	4	K4	15				
	supported bridge with a clear span of 24 m, subjected to a factored bending							
	moment 4800 kN-m and factored Shear force 1000 kN. The girder carries							
	two factored moving loads of 180 kN each spaced at 2 m center to centre.							
	I he plate girder is restrained laterally and prevented from rotation.							
9	UNII - V Design a nine culvert thrap a road ambankment of height ⁹ m. The	5	K1	15				
9.	width of the roadis 7.5 m and the formation width is 10 m. The side slope	5	174	15				
	of the embandment is $1.5 \cdot 1$ Themaximum discharge is $6m^3/s$. The safe							
	velocity is 4 m/s. Class AA tracked vehicle is to be considered as live load							
	Assume hell-mthed entry. Given $C_{1} = -1.5$, $C_{2} = 0.010$ and the unit weight							
	of the soil = 20 kN/m^3 .							
	OR							
10.	Design suitable RCC non pressure pipe culvert to suit the following data:	5	K4	15				
	Discharge thrgh pipe culvert= $1.57 \text{ m}3/\text{s}$,							
	Velocity of flow thrgh pipe= 2 m/s ,							
	Width of road= $7.5m$,							
	Bed level of stream= 100 m ,							
	Top of embankment= 103 m ,							
	Top width of embankment= $1.5:1$							
	Loading is IRC class AA wheel load of 62.5 kN							
	Draw longitudinal section, plan and end view of pipe culvert							
CO	: Crse tcome							
KL:	Knowledge Level							
M: Marks								
al.								

www.FirstRanker.com