

www.FirstRanker.com

www.FirstRanker.com

A)

(

[M19CAD1101]

I M. Tech I Semester (R19) Regular Examinations GEOMETRIC MODELING Department of Mechanical Engineering MODEL QUESTION PAPER

TIME: 3Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT.

All questions carry equal marks.

	1				-
			CO	KL	Μ
		UNIT-I			
1.	a).	Explain abt Non – Parametric representation of curves.	1	2	8
	b).	Derive the geometric form of hermit's cubic spline.	1	3	7
		OR			
2.	a).	Supply the algebraic form of a cubic spline.	1	2	8
	b).	What are the properties of parametric curves?	1	2	7
		UNIT-II			
3.	a).	Explain about the properties of Beizer curve.	2	2	8
	b).	Derive the equation of a closed Bezier curve of degree 5.	2	3	7
		OR			
4.	a).	Explain about composite beizer curves	2	2	8
	b).	Explain about truncated and subdividing of curves	2	2	7
		UNIT-III			
5.	a).	Calculate the five third-order non-uniform B-spline basis functions	3	3	8
		$N_{i,3}(t)$ i=1,2,3,4,5using the knot vectors [X]=[0011333] which			
		contains an interior repeated knot value.			
	b).	Explain abt Quadratic and cubic B -Spline basis functions	3	2	7
		OR OR			
6.	a).	Fit a B-spline curve with the following control points $P_1(0,0)$, $P_2(2,2)$,	3	3	8
		$P_3(4,4), P_4(6,6).$			
	b).	Sweep the normalized cubic spline curve segment defined by P [0 3 0	3	3	7
		1], P [3 0 0 1] and Pi [3 0 0 0], Pi [3 0 0 0] 10 units along Z-axis.			
		UNIT-IV			
7.	a).	Determine the point on bilinear surface defined by $P(0,0)=[0 \ 0 \ 1]$,	4	3	8
		$P(0,1)=[1 \ 1 \ 1], P(1,0)=[1 \ 0 \ 0], P(1,1)=[0 \ 1 \ 0], i.e., the ends of opposite$			
		diagonals on opposite faces of unit cube in object space,			
		corresponding to u=w=0.5 in parametric space.			
	b).	Show by example that a planar coons bi-cubic surface results when the	4	3	7
		position, tangent and twist vectors all lie in the same plane.			
		OR			1
8.	a).	Develop the equations of following surfaces:	4	3	8
	,	(i)Torus; (ii) Ruled surface; (iii) coons bilinear patch; & (iv) Bezier			

www.FirstRanker.com

www.FirstRanker.com

		surface of degrees 2×3 .			
	b).	surface.	4	2	7
		UNIT-V			
9.	a).	Discuss the properties of composite objects.	5	2	8
	b).	Explain abt Tri -cubic solid in detail.	5	2	7
		OR			
10.	a).	Explain Half space modeling in detail and provide two examples.	5	2	8
	b).	Discuss with the help of neat sketches, the most commonly used solid	5	2	7
		entities			
CO-CRSE TCOME		E TCOME KL-KNOWLEDGE LEVEL M-MARI	<s< th=""><th></th><th></th></s<>		

www.firstRanker.com