

www.FirstRanker.com

[M19CAD1105]

I M. Tech I Semester (R19) Regular Examinations MECHANICAL VIBRATIONS Department of Mechanical Engineering MODEL QUESTION PAPER

TIME: 3Hrs.

Max. Marks: 75 M

Answer ONE Question from EACH UNIT.

All questions carry equal marks.

		CO	KL	Μ
	UNIT-I			
1. a).	Determine the differential equation of a spring mass system (shown in the figure below) and its natural frequency by using (i). D' Alembert's principle and (ii). Rayleigh's method.	1	3	8
	m			
b).	Explain the classifications of vibration with examples.	1	2	7
	OR			
2. a).	Write short notes on vibration isolation and transmissibility	1	2	7
b).	Derive the expression for vibration response of a single degree of freedom system if the damping provided is under damped system.	1	3	8
	UNIT-II			
3.	Write short notes on convolution integral and shock spectrum.	2	2	15
	OR			
4.	Obtain the response equation for a system subjected to unit step and unit ramp functions.	2	3	15
	UNIT-III			
5.	For the three degree of freedom system shown in figure below, obtain the three natural frequencies and the corresponding mode shapes.	3	3	15
	3K $4m$ WW $2m$ WW m			
	OR			
6.	Determine the natural frequency of torsional vibrations of a shaft with two circular discs of uniform thickness at the ends. The masses of the	3	3	15

www.FirstRanker.com

discs are M1 = 500 kg and M2 = 1000 kg and their outer diameters are D1 = 125 cm and D2 = 190 cm. The length of the shaft is 300 cm and

www.FirstRanker.com

	its diameter is 10 cm. Take the Modulus of rigidity for the material of shaft is $G = 0.83 \times 10^{11} \text{ N/m}^2$.			
	UNIT-IV			
7.	Find the lowest natural frequency of transverse vibrations for the system shown in figure below by Rayleigh's method. Take $E=1.96 \times 10^{11} \text{ N/m}^2$ and $I=10^{-6} \text{ m}^4$.	4	3	15
	OR			
8.	For the three degree of freedom system shown in figure below find the lowest natural frequency using Stodola's method.	4	3	15
	UNIT-V			
9.	Calculate the whirling speed of shaft supported by long bearing so as to give zero slope at both ends of the shaft.	5	3	15
	OR			
10.	Prove that the critical speed of whirling speed for a rotating shaft is same as the frequency of natural transverse vibration.	5	3	15
CO-CF	RSE TCOME KL-KNOWLEDGE LEVEL M-MARK	(S		