[M19 ST 1108]

I M. Tech I Semester (R19) Regular Examinations ADVANCED REINFORCED CONCRETE DESIGN
 (STRUCTURAL ENGINEERING) MODEL QUESTION PAPER

TIME: 3 Hrs.

Answer ONE Question from EACH UNIT
All questions carry equal marks *****

Max. Marks: 75 M

$$
\operatorname{lechex}_{2}
$$

			CO	KL	M
		UNIT - I			
1.	a).	Analyse and Check the suitability to reduce the maximum moment at support B by 30% and redistribute to the spans of a T-beam ABC which is continus over two spans of 8 m each and it carries a factored UDL of 75 kN / m. Assume M25 concrete and Fe415 steel are used. The T-beam flange width $=1000 \mathrm{~mm}$, web thickness $=300 \mathrm{~mm}$, slab thickness $=150 \mathrm{~mm}$, Overall depth $\mathrm{D}=820 \mathrm{~mm}$ and effective depth $\mathrm{d}=770 \mathrm{~mm}$. Also design the sections for maximum positive and negative moments.	1	K4	15
		OR			
2.	a).	Compute the values at salient points on the stress-strain curve of concrete in bending of an unconfined concrete member if cylindrical strength of concrete used is $f^{\prime}{ }_{c}=25 \mathrm{~N} / \mathrm{mm}^{2}$. If such a concrete is confined in a section of (bxD) $300 \times 500 \mathrm{~mm}$ with a clear cover of 50 mm with 10 mm stirrups at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$, compute the stress-strain curve for inelastic analysis of the structure. Use the relation $\mathrm{f}^{\prime}{ }^{\prime}=0.8 \mathrm{f}_{\mathrm{ck}}$	1	K4	15
		2			
		Co UNIT - II			
3.	a).	Analyse and design a slab isosceles in shape using yield line analysis by equilibrium method. The slab sides are $4 \mathrm{~m}, 4 \mathrm{~m}$ and 3 m and simply supported in 4 m sides with free end on 3 m . The slab carries an imposed load of $2 \mathrm{kN} / \mathrm{m}^{2}$ and finishes $1.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe 415 grade steel.	2	K4	15
		OR			
4.	a).	Analyse and design a square slab of size 4 mx 4 m which is continus on all fr sides, using yield line analysis by Virtual work method. The slab carries an imposed load of $3 \mathrm{kN} / \mathrm{m}^{2}$ and finishes $1.0 \mathrm{kN} / \mathrm{m}^{2}$. Use M25 concrete and Fe 415 grade steel.	2	K4	15
		UNIT - III			
5.	a).	Analyse\& Design a flat plate supported on columns spaced at 6000 m in both directions. The size of columns is $500 \times 500 \mathrm{~mm}$ and the imposed load on panel is $4.4 \mathrm{kN} / \mathrm{m}^{2}$; Floor height is 4 m ; Floor finish is $1.4 \mathrm{kN} / \mathrm{m}^{2}$. Assume Fe 415 grade steel \& M25 concrete. Exposure is severe	3	K5	15
		OR			

6.		Analyse\& Design a flat plate with suitable column head supported on circular columns spaced at 7200 m in both directions. Diameter of columns is 600 mm and the imposed load on panel is $4 \mathrm{kN} / \mathrm{m}^{2}$; Floor height is 3.6 m ; Floor finish is $1 \mathrm{kN} / \mathrm{m}^{2}$. Assume Fe 415 steel \& M35 concrete. Exposure is mild	3	K5	15
		UNIT - IV			
7.	a).	Compute the thickness and reinforcements for a simply-supported transfer girder of length 6000 mm loaded from two columns at 1.50 m from each end with load 5 kN . The total depth of beam is 3600 mm and the width of supports is 500. Assume Fe 415 grade steel \& M25 concrete			15
		OR			
8.	a).	Analyse\& Design a deep beam with an opening for the following data. Span $=5000 \mathrm{~mm}$; Girder subjected to two point loads of each 4 kN acting at 1.25 m from supports; Total depth of beam is 3000 mm ; Width of supports is 450 mm ; Assume Fe 415 grade steel \& M20 concrete. Width and depth of opening is $150 \times 250 \mathrm{~mm}$; Location of bottom of opening from bottom of beam is 1800 mm .	4	K4	15
		UNIT - V			
9.	a).	Compute the maximum factored axial load carrying capacity of the slender column using additional moment method, given that the column is braced against sideway and has an unsupported height of 7.00 m . The column cross section is $500 \times 300 \mathrm{~mm}$ with a clear cover of 40 mm and reinforced with three 25 mm dia bars on each longer face and 8 mm lateral ties. Assume effective length ratios $\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=0.85$. Use M25 concrete and Fe 415 steel.	4	K4	15
		OR			
10.	a).	Design the longitudinal reinforcement for a braced column, $300 \times 400 \mathrm{~mm}$, subjected to a factored loadof 1500 kN and factored moments of 60 kNm and 40 kNm w.r.t. major and minor axis respectively at the top end. Assume that the is bent in dble curvature (in both directions) with the moments at the bottom end are equal to 50% of the corresponding moments at top. Assume an unsupported height of 7.00 m and an effective length ratio of 0.85 in both directions. Use M30 concrete and Fe 415 steel.	5	K5	15

CO: Crse tcome
 KL: Knowledge Level
 M: Marks

