MCA IV Semester Regular Examinations May 2019

DESIGN \& ANALYSIS OF ALGORITHMS

(For 2017 admitted batches only)
Time: 3 hours
Max. Marks: 60
Answer all the questions

1 (a) Apply Strassen's algorithm to compute matrix multiplication, using 2×2 matrices, exiting the recursion when $\mathrm{n}=2$.

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
4 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 \\
5 & 0 & 2 & 1
\end{array}\right] \times\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
2 & 1 & 0 & 4 \\
2 & 0 & 1 & 1 \\
1 & 3 & 5 & 0
\end{array}\right]
$$

(b) Explain the concept of divide and conquer.

OR
2 (a) Illustrate the tracing of Quick Sort algorithm for the following set of numbers:
$18,25,18,40,11,37,32,9$
(b) Explain best case, average case and worst case efficiencies for quick sort with specific examples.

3 (a) Write an algorithm to find single source shortest paths.
(b) Obtain the optimal solution for the job sequencing problem with deadline where $\mathrm{n}=4$ Profit $(P 1, P 2, P 3, P 4)=\{100,10,15,17\}$ and deadlines $=\{2,1,2,1\}$.

OR
4 (a) Write an algorithm, to find the minimum cost spanning tree using Kruskal's method. Apply the algorithm on the graph shown below.

(b) Write a note on travelling sales person problem.

5 (a) What is graph traversal? Explain depth first traversal and breadth first traversals, with an example.
(b) What is a Hamilton cycle? Give an example.

OR

6 (a) Explain back tracking concept and apply it to solve subset sum problem for $S=\{6,5,3,7\}$ and $\mathrm{d}=15$.
(b) Explain Bi-connected components of a graph with a suitable example.

Contd. in page 2

7 Explain how branch and bound is different from backtracking. Solve the following instance of the $0 / 1$ knapsack problem by Branch and bound algorithm ($\mathrm{W}=16$).

Item	Weight	Value
1	10	$\$ 100$
2	7	$\$ 63$
3	8	$\$ 56$
4	4	$\$ 12$

OR

8 (a) What is a comparison tree? Draw the comparison tree for sorting three elements.
(b) Show how to invert a lower triangular matrix using lower bound theory.

9 Give and explain the relationship between P, NP, NP-complete and NP hard problems.

OR

10 Write short notes on the following NP-complete problems:
(a) Node cover.
(b) Hamilton circuit problem.
(c) Graph coloring problem.

