Code: 17F00101

MCA I Semester Supplementary Examinations June/July 2018
MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE
(For students admitted in 2017 only)
Time: 3 hours
Max. Marks: 60

Answer all the questions

1 (a) Write a note on mathematical induction.
(b) Show that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, n \geq 1$ by mathematical induction.
(c) Show that any positive integer n greater-than or equal to 2 is either a prime or a product of prime.

OR
2 (a) Let R be a binary relation on the set of all positive integers such that; $R=\{(a, b) / a-b$ is an odd positive integer $\}$. Show that R is an equivalence relation.
(b) Prove that $P \vee Q \Leftrightarrow \neg(\neg P \wedge \neg Q)$ using truth table.

3 (a) State and prove Lagrange's theorem.
(b) Let $(A, *)$ be an algebraic system where $*$ is a binary operation such that for any $\mathrm{a} \& \mathrm{~b}$ in $\mathrm{A}, \mathrm{a} * \mathrm{~b}=\mathrm{a}$.
(i) Show that $*$ is a associative operation.
(ii) Can $*$ ever be a commutative operation.

OR

4 (a) Show that any subgroup of a cyclic group is cyclic.
(b) Show that every group containing exactly two elements is isomorphic to $\left(Z_{2}, \oplus\right)$.

5 (a) Write down the rules of sum and product.
(b) In how many ways can two integers be selected from the integers $1,2, \ldots . .100$ so that their difference is exactly seven.
(c) In how many ways can two adjacent squares be selected from 8×8 chessboard.
(d) Five boys and five girls are to be seated in a row. In how many ways can they be seated if:
(i) All boys must be seated in the five left most seats.
(ii) No boys can be seated together.

OR

6 (a) Solve the recurrence relation:

$$
a_{r}-7 a_{r-1}+10 a_{r-2}=0 \text { given that } a_{0}=0 \& a_{1}=3
$$

(b) Determine the particular solution for the difference equation: $a_{r}-3 a_{r-1}+2 a_{r-2}=2^{r}$.
(c) Write a note on total solutions.

7 (a) In a directed or undirected graph with a vertices, if there is a path from vertex V_{1} to vertex V_{2} then there is a path of no more than $n-1$ edges from vertex V_{1} to vertex V_{2}. Prove this theorem.
(b) Briefly discuss about shortest paths in weighted graph.

OR

8 (a) There is always a Hamiltonian path in a directed complete graph. Prove this theorem.
(b) Briefly discuss about operations on graphs.

9 (a) State and explain the Kruskal's algorithm with an example.
(b) Briefly discuss about binary search tree.

OR

10 (a) State and explain the Prim's algorithm with an example.
(b) Let $a=3^{r}$
$b=2^{r}$

