Code: 06MC104

MCA I Semester Supplementary Examinations August 2014
 PROBABILITY \& STATISTICS

(For 2008 admitted students only)
Time: 3 hours
Max. Marks: 60
Answer any FIVE questions
All questions carry equal marks

1 (a) A and B throw alternatively with a pair of dice one who first throws a total of nine wins. What are their respective chances of winning if A starts the game?
(b) Define conditional probability. State and prove Baye's theorem.

2 (a) (i) Define descrete distributive function.
(ii) Given that $f(x)=k / 2 x$, is a probability distribution for a random variable X that can take on the values $x=0,1,2,3$ and 4 . Find k, mean and variance of x.
(b) (i) Define continuous distributive function.
(ii) The cumulative distribution function for a continuous random variable X is $F(x)= \begin{cases}1-e^{-2 x}, & x \geq 0 \\ 0, & x<0\end{cases}$ then find density function $f(x)$, mean and variance.

3 (a) It has been found that 2% of the tools produced by a certain machine are defective. What is the probability that in a shipment of 400 such tools:
(i) 3% or more
(ii) 2% or less will prove defective.
(b) List the properties of normal distribution.

4 (a) Find the mean and standard deviation of sampling distribution of variances for the population 2, 3, 4, 5 by drawing samples of size two
(i) with replacement
(ii) without replacement.
(b) What is the effect on standard error, if a sample is taken from an infinite population of sample size increased from 400 to 900 ?

5 (a) Prove that for a random sample of size $\mathrm{n}, x_{1}, x_{2}----x_{n}$ taken from an infinite population $S^{2}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is not an unbiased estimator of the parameter σ^{2} but $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is unbiased.
(b) A random sample of size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean is $\bar{x}=21.6$, construct a 95% confidence interval for the population mean μ.

6 (a) In 64 randomly selected hours of production, the mean and the standard deviation of the number of acceptance pieces produced by an automatic stamping machine are $x=1.038$ and $\sigma=0.146$
(b) In an investigation on the machine performance the following results are obtained.

	No. of units inspected	No. of defectives
Machine 1	375	17
Machine 2	450	22

Test whether there is any significant performance of two machines at $\alpha=0.05$.

7 (a) Explain student - distribution, its properties and applications.
(b) The mean life time of a sample of 25 fluorescent light bulbs produced by a company is computed to be 157 hours with a S.D of 120 hours. The company claims that the average life of the bulbs produced by the company is 1600 hours using the level of significance of 0.05 . Is the claim acceptable?

8 (a) Write characteristics of ($\mathrm{m} / \mathrm{m} / 1$): (∞ / FIFO) model.
(b) What is queuing problem?

