

Printed Pages: 5	1327	AS-101
(Following Paper II	O and Roll No. to Answer Book)	be filled in your
Paper ID :199111	Roll No.	
	m.m	

B.Tach.

(SEM. I) THEORY EXAMINATION, 2015-16 ENGINEERING MATHEMATICS-I

[Time : 3 hours] [Tolal Marks : 100]

SECTION-A

- Attempt all parts. All parts carry equal marks. Write answer of each part in shots. (10×2=20)
 - (a) If $u = \log(x^2/y)$ then value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ?$
 - (b) If z = xyf(x/y) then value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$
 - (c) Apply Taylor's series find expansion of f (x, y) = x³ + xy² about point(2, 1) upto first degree term.
 - (d) It x = u v, $y = u^2 v^2$, find the value of $\frac{\partial(u, v)}{\partial(x, y)}$
 - (e) Find all the asymptotes of the curve xy2=4a2(2a-x)

4000

www.FirstRanke

(1)

P.T.O.

(g) If $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & -2 \end{bmatrix}$, find the eigen value of A^2

Find the inverse of the matrix by using elementary

4

row operation. A= $\begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$

4000

2

If
$$x = \sin\left\{\frac{1}{m}\sin^{-1}y\right\}$$
 find the

2. If
$$x = \sin\left\{\frac{1}{m}\sin^{-1}y\right\}$$
 find the value of y_n at $x=0$

valuate
$$\frac{r(8/3)}{r(2/3)}$$
.

j) Evaluate
$$\frac{r(8/3)}{r(2/3)}$$
.

(j) Evaluate
$$\frac{r(8/3)}{r(2/3)}$$
.

(j) Evaluate $\frac{r(8/3)}{r(2/3)}$.

j) Evaluate
$$\frac{r(8/3)}{r(2/3)}$$
.

(1, 1, 1).

(i) If $\phi(x,y,z)=x^2y+y^2x+z^2$, find $\nabla \phi$ at the point

6

(h) Evaluate ∫∫∫ xyz dx dy dz.

(10x5=50)

œ

- if u, v, w are the roots of the equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ in λ find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$

9

Show that the vector field $\vec{F} = \frac{r}{|\vec{r}|^3}$ is irrotational as well

4000

AS-101

• (3)

as solenoidal. Find the scalar potential.

P.T.O.

If r the distance of a point on conic $ax^2 + by^2 + cz^2 = 1$, stationary values of r are given by the equation lx + my + nz = 0 from origin, then that the

$$\frac{m^2}{r^2} + \frac{m^2}{1 - br^2} + \frac{n^2}{1 - cr^2} = 0$$

Find the Eigen values and corresponding Eigen

tetraheadron OABC. Also find its mass if the density at The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B, and C. Apply Dirichlet's integral to find the volume of the

Change the order of Integration in $I = \int_0^1 \int_{X^2}^{2-x} xy dx dy$ and hence evaluate the same. any point is kxyz.

x=1, y=0, y=1 and z=0, z=1.Verify gauss's divergence theorem for the function $\vec{F} = x^2 \hat{i} + z \hat{j} + yz \hat{k}$, taken over the cube bounded by x=0

www.FirstRanke

3

of vector.

Determine the constant a and b such that the curl

4000

12.

<u>a</u>

Evaluate $\int_{0}^{\infty} \frac{dx}{(a^{n}-x^{n})^{V_{n}}}$

AS-101

4000

(5)

· AS-101

SECTION-C

Attempt any two question from this section.

(15x2=30)

10. (a) Expand excos by in power of in powers of x and y as terms of third degree.

 $\vec{A} = (2xy + 3yz)\hat{i} + (x^2 + \alpha xz - 4z^2)\hat{j} - (3xy + byz)\hat{k}$

is zero.

<u></u> Examine the following vector for linearly Possible. dependent and find the relation between them. If

11. (a) Define Beta and Gamma function and Evaluate $X_1 = (1, 1, -1, 1), X_2 = (1, 1, 2, -1), X_3 = (3, 1, 0, 1).$

Find the area between the parabola $y^2 = 4ax$ and

ਭ $x^2 = 4ay$.

(c) If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$ find $\frac{\partial (y_2, y_2, y_3)}{\partial (x_1, x_2, x_3)}$

ਭ Reduce the matrix in to normal form and hence

(c) It $u = u \left(\frac{y - x}{xy}, \frac{z - x}{xz} \right)$, show that: find its rank 0

www.FirstRanke