

EMEWWw.First

(Following Paper ID and Roll No. to be filled in your Answer Book)

Paper ID: 140122

Roll No.

B.Tech

(SEM. I) THEORY EXAMINATION, 2015-16 ENGINEERING MECHANICS (EME-102)

[Time:3 hours]

[Total Marks: 100]

SECTION-A

- Attempt **all** parts. All parts carry equal marks. Write answer of each part in short. $(10\times2=20)$
 - (a) Two forces 60 KN and 20KN act at a point O. The included angle between them is 50°. Find the magnitude and direction of the resultant?
 - (b) Define force couple system.
 - (c) Define point of contra-flexure in beam.
 - (d) Write down the assumptions in truss analysis.
 - (e) Define product of inertia and area moment of inertia.

EME 102 / 7100

(1)

MANN FIRST Ranker COM

2

EME 102

 $(10 \times 5 = 50)$

Also find out the position of max BM and point of contra

10 KN/m

120 KNm 10 KN

20 KN

20 KN/m

flexure.

500mm and 800 mm respectively are placed in a trench with smooth side walls and floor as shown in figure.1 Three sphere A, B and C having their diameter 500 mm,

at P,Q,R, and S. 4KN and 8KN respectively. Determine the reactions mm. The weights of the cylinders A, B and C are 4 KN The center to center distance of spheres A and B is 600

Find out axial forces in all the members of truss Fig. Fig. 2.0

MANNEHEIR

3.0.

P.T.O.

Fig. 4.0

4

EME 102

out MOI about base. Take X=40mm Find out centroid of given section Fig.4.0. Also find cylinder about it's transverse centriodal axis.

> down and carries weight 800N Fig. 5.0. If the coefficient of friction is 0.2 find tension in rope and acceleration

with which body moves up.

MNNFIIST

Fig. 6.0

<u>6</u>

EME 102

§ 10. (a) Determine the resultant of four forces tangent to

the circle of radius 3 m shown in Fig.6.0. What

will be its location with respect to the center of

the circle.

- of both blocks.
- 12. (a) Draw the Stress-Strain diagram for ductile material (b) A sphere, cylinder and hoop is released from the outer pulley respectively. Find out time required m. Two blocks A and B are attached to inner and for block A to move 20 m. also find out velocities top of a inclined and rolling. What will be the velocity at the end of inclined plane?

MANKIIS

mild steel under tension and discuss all the salient P.T.O.

points.

www.First er.cor

- (b) Determine the dimensions of a simply supported rectangular steel beam 6 m long to carry a brick wall 250 mm thick and 3 m high. If the brick weight is 20 KN/m³ and the maximum stress is 800N/cm². The depth of beam is 1.5 times of it's width.
- (c) Define the term Poisson's ratio. Also establish the relation between modulus of elasticity and modulus of rigidity.

Λ

(8)

EME 102 / 7100