Paper ID: 181504

www.FirstRank (Following Paper ID and Roll No. to be filled in your www.First Answer Book)

Roll No.

B.Tech.

(SEM. I) THEORY EXAM. 2015-16

ENGINEERING PHYSICS-I

[Time: 3 hours] [Total Marks: 100]

SECTION-A

- Attempt all parts. all parts carry equal marks. Write 1. answer of each part in short. (2x10=20)
 - How the negative results of Michelson-Morley (a) experiment interpreted?
 - Find relativistic relation between energy and (b) momentum.
 - (c) If uncertainty in the position of a particle is equal to de Broglie wavelength, what will be uncertainty in the measurment of velocity?
 - Write the characteristics of wave function, (d)
 - (e) Why the center of Newton's ring is dark?
 - (f) Define plane fo polarization and plane fo vibaration.

(1)[P.T.O.] 82000

www.FirstRanker.com

[P.T.O.]	(3)	82000	∞	NAS-101	(2)	000	•
erference in thin	Explain the phenomenon of interference in thin film due to reflected rays.	l. (a)		in what proportion would ged?	liquid of refractive index 1.33 in what proportion would the diameter of the rings changed?	= -	Firet
s experiment in	outcome of Davisson-Germer's experiment in detail.			on's? if in a newton's rings terspace is replaced by a	Explain the formation of Newton's? if in a newton's rings experiment, the air in the interspace is replaced by a	e =	SING
sis. Discuss the	Explain de-Broglie's hypothesis. Discuss the	(c)		lependent wave equation.	Derive Schrodinger's time independent wave equation.	www. ⊷	an
wice its rest mass	If the kinetic energy of a body is twice its rest mass energy, find its velocity.	<u>6</u>		cance of wave function.	Explain the physical significance of wave function.	w.FirstF er.com	Ker
ion equations and nents is invariant.	(a) Derive the Galilean transformation equations and show that its acceleration components is invariant.	10. (a)		nty principle. Prove that ne nucleus and proton can	State Heisenberg's uncertainty principle. Prove that electron cannot exist inside the nucleus and proton can	Rank	1100.
ection.(2×15=30)	Note: Attempt any two questions from this section. $(2 \times 15 = 30)$	lote: Atte	7	leads to the concept of y.	conservation of momentum leads to the concept of variation of mass with velocity.	4 0	
	SECTION-C			nvariance of the law of	Show that the relativistic invariance of the law of		3.
c 1.462. Compute re, if it supported um.	index 1.468, cladding refractive index 1.462. Compute the maximum radius allowed for a fibre, if it supported only one mode at a wavelength 1300 nm.	the only		od moving with a velocity lat 30° to its own length.	e percentage contraction of a rod moving with a velocity of 0.6c in a direction inclined at 30° to its own length.	www.Fi	
as core refractive	in optical libre. A step index libre has core refractive	i i		per length? Derive the	what do you mean by pro	rst con	2

MMM.FirsiRanker.com

A diffraction grating used at normal incidence gives a yellow ling www.finetrank a certain spectwayw.First

order superimposed on a blue line ($\lambda = 4800$ Å) of

next higher order. If the angle of diffraction is

er.cor

(c) Describe the construction and working of Nicol

sin⁻¹(3/4), calculate the grating element.

prism. Prove that $v_p x v_g = c^2$. Where v_p = phase velocity and (a)

- v_e=group velocity.
- Discuss the fifferent types of optical fibre in detail. (b)
- In a Ruby laser, total number of Cr⁺³ is 2.8x10¹⁹. If (c) the laser emits radiation of wavelength 7000Å calculate the energy of the laser pulse.

Physical Constants:

12.

Mass of electron $m_0 =$	$9.1 \times 10^{-31} \text{ kg}$	g
--------------------------	----------------------------------	---

Mass of proton
$$m_p = 1.67 \times 10^{-27} \text{ kg}$$

Speed of light
$$c = 3x10^8 \text{ m/s}$$

Planck's Constant $h = 6.63x10^{-34} \text{ J/s}$

Charge on electron
$$e = 1.67 \times 10^{-27} \text{ kg}$$

Boltzmann's Constant
$$k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{k}^{-1}$$

---- X ----

(4)**NAS-101 820**00

> www.FirstRank er.com

MMM.FirstRanker.com