Printed Pages: 7 www.firstRank NM.gryog.First er.com (Following Paper ID and Roll No. to be filled in your						
			Answer Bo	ook)		
Paper ID :140102			Roll No.			
	(CT	M DTHEO	B. Tech.	LATION 20	15.16	
(SEM. I) THEORY EXAMINATION, 2015-16 ENGINEERING MECHANICS						
[Time:3 hours]			EKING MEX		Marks:100]	
			Section-A			
Q.1		Attempt all parts. All parts carry equal marks. Write answer of each part in short (2x10=20)				
	(a)	condition o	ic equilibrium of static equi and non-conc	librium for	a Coplanar	
	(b)	(b) Write any four engineering applications of friction.(c) Differentiate between perfect and imperfect truss.(d) What do you understand by point of contraflexure?				
	(c)					
	(d)					
	(e)	State perper	ndicular axis	theorem.		
			(1)	NME	-102 / 35000	
					1	

www.FirstRanker.com

2 (fig.1)

Ś Two identical rollers, each of weights 1000 N are supported by an inclined plane as shown in fig.1.

моне: Aucтри илу име questions и от инв вестоп.

$$(10 \times 5 = 50)$$

beam as shown in fig.3.

m my Bream valentiers

(fig.3)

=

at the points of supports.

Assuming smooth surfaces, find the reactions induced

200

ratio of a to b so that $\bar{y} = \frac{3}{4}b$. For the semi-annular area shown in fig. 4, determine the

'n

(3)

www.FirstRanker.com

www.First er.con

<u>4</u>

moves to the right with a velocity of 1.2 m/s and B moves paratiet plates A and B as shown in fig. 5. At the instant A wheel. Take $r_1 = 120 \text{ mm}$ and $r_2 = 360 \text{ mm}$. to the left with a velocity of 0.6 m/s. Calculate the velocity of center of wheel and the angular velocity of

9.

sphere about centroidal axis. Derive the expression for mass moment of inertia of a

torsional shear stress is limited to 40 N/mm2. Assume not exceed 1º per metre length and the maximum

modulus of rigidity to be 80 N/mm².

Section-C

Note: Attempt any two questions from this section.(15x2=30)

10.

Determine the moment of inertia about x-x and y-y axis section as shown in fig. 6 passing through the centroid of the unsymmetrical I-

(5)

www.FiretRanker.com

Ξ

Derive the Bending equation. A cast iron water main 500

mm external diameter and 25 mm thickness is running

12. kG/m³ respectively. weight of cast iron and water are 18500 kG/m3 and 1000

bending stress produced in the material if the specific full and is simply supported 30 m apart. Determine the

For the beam shown in fig.7 draw the shear force and contra-flexure if any. maximum bending moment. Also determine the point of bending moment diagram. Determine the position of

6

**ecific and 1000

www.FirstRanker.co