www.FirstRanker.com
www.FirstRanker.com

Printed pages: 02
Paper Id: 9003

Roll No. \square

B. TECH
 (SEM I) THEORY EXAMINATION 2017-18
 ENGINEERING MATHE MATICS

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a. Find the $n^{\text {th }}$ derivative of $X^{n-1} \log \mathrm{x}$.
b. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} x e^{y} d x d y$.
c. If $x^{2}=a u+b v y^{2}=a u-b v$, then find $\left(\frac{\partial u}{\partial x}\right)_{y} \cdot\left(\frac{\partial x}{\partial u}\right)_{v}$.
d. Evaluate the area enclosed between the parabola $\mathrm{y}=x^{2}$ and the straight line $\mathrm{y}=\mathrm{x}$.
e. What error in the logarithm of a number will be produced by an error of 1% in the number?
f. Find the value of m if $\hat{F}=m x i-5 y \hat{\jmath}+2 z \hat{k}$ is a solenoidal vector.
g. Reduce the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$ in to normal form and find its rank.

SECTION B

2. Attempt any three parts of the following:
a) i) If $u=\sin n x+\cos n x$, then prove that $u_{r}=\left\{n^{r} 1+(-1)^{r} \sin 2 n x\right\}^{1 / 2}$, where u_{r} is the $r^{t h}$ differential coefficient of u w.r.t. x.
ii) If $u=\sin ^{-1}\left(\frac{x^{3}+y^{3}+z^{3}}{a x+b y+c z}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2 \tan u$.
b) i) Using elementary transformations, find the rank of the following matrix:

$$
A=\left[\begin{array}{cccc}
2 & -1 & 3 & -1 \\
1 & 2 & -3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] .
$$

ii) Compute the inverse of the matrix $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ by employing elementary row transformation.
c) i) If $u_{1}=\frac{x_{2} x_{3}}{x_{1}}, u_{2}=\frac{x_{3} x_{1}}{x_{2}}$ and $u_{3}=\frac{x_{1} x_{2}}{x_{3}}$ find the value of $\frac{\partial\left(u_{1}, u_{2}, u_{3}\right)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}$.
ii) If $u=f(r, s, t)$, wherer $=\frac{x}{y}, s=\frac{y}{z}, t=\frac{z}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
d) i) Change the order of integration in $\mathrm{I}=\int_{0}^{1} \int_{x^{2}}^{2-x} f(x, y) d y d x$.
ii) Prove that: $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma m \Gamma n}{\Gamma(m,+n)}, \mathrm{m}>0, \mathrm{n}>0$.
e) i) Determine the value of constants a, b, c if, $\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+$ $(4 x+c y+2 z) \hat{k}$ is irrotantional.
ii) If $\vec{A}=(x-y) \hat{\imath}+(x+y) \hat{\jmath}$, evaluate $\oint_{c} \vec{A} \cdot \overrightarrow{d r}$ around the curve C consisting of $y=x^{2}$ and $y^{2}=x$.
3. Attempt any two parts of the following:
(a) If $y=e^{\text {tan-1 }} x$, then prove that $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$ and $\left(1+x^{2}\right) y_{n+2}+[2(n+1) x-1] y_{n+1}+$ $n(n+1) y_{n}=0$.
(b) If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right) ; x y \neq 0$ prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
(c) Trace the curve: $y^{2}(a+x)=x^{2}(3 a-x)$.
4. Attempt any two parts of the following:
(a) A balloon in the form of right circular of radius 1.5 m and length 4 m is surmounted by hemispherical ends. If the radius is increased by 0.01 m find the percentage change in the volume of the balloon.
(b) Using Lagrange's method of Maxima and Minima, find the shortest distance from the point $(1,2,-1)$ to sphere $x^{2}+y^{2}+z^{2}=24$.
(c) Express the function $f(x y)=x^{2}+3 y^{2}-9 x-9 y+26$ as Taylor's Series expansion about the point $(1,2)$.
5. Attempt any two parts of the following:
$7 \times 5=35$
(a) Investigate for what values of λ and μ, the system of equations $x+y+z=6, x+2 y+3 z=10$ and $x+$ $2 y+\lambda z=\mu$, has:
(i) No solution
(ii) Unique solution
(iii) Infinite number of solutions.
(b) Verify Clayey - Hamilton theorem for the matrices $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
(c) Show that the matrix $\left[\begin{array}{cc}\alpha+i y & -\beta+i \delta \\ \beta+i \delta & \alpha-i y\end{array}\right]$ is unitary if $\alpha^{2}+\beta^{2}+y^{2}+\delta^{2}=1$.
6. Attempt any two parts of the following:
$7 \times 5=35$
(a) Find the mass of a plate which is formed by the co-ordinate planes and the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, the density is given by $\rho=\mathrm{k} x y z$.
(b) Evaluate $\mathrm{I}=\int_{0}^{1}\left(\frac{x^{3}}{1-x^{3}}\right)^{1 / 2 \mathrm{dx}}$
(c) Evaluate $\iiint_{R}(x+y+z) d x d y d z$ where $\mathrm{R}: 0 \leq x \leq 1,1 \leq \mathrm{y} \leq 2,2 \leq \mathrm{z} \leq 3$.
7. Attempt any two parts of the following:
$7 \times 5=35$
(a) Verify Green's theorem, evaluate $\int_{c}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where c is square formed by lines $x=$ $\pm 1, \mathrm{y}= \pm 1$
(b) Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \hat{\imath}-2 x y \hat{\jmath}$ taken round the rectangle bounded by the lines $x= \pm \mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.
(c) If all second order derivatives of ϕ and \vec{v} are continuous, then show that
$\operatorname{Curl}(\operatorname{grad} \phi)=0($ ii $) \operatorname{div}(\operatorname{curl} \vec{v})=0$.

